33,204 research outputs found

    On the Linear Extension Complexity of Regular n-gons

    Full text link
    In this paper, we propose new lower and upper bounds on the linear extension complexity of regular nn-gons. Our bounds are based on the equivalence between the computation of (i) an extended formulation of size rr of a polytope PP, and (ii) a rank-rr nonnegative factorization of a slack matrix of the polytope PP. The lower bound is based on an improved bound for the rectangle covering number (also known as the boolean rank) of the slack matrix of the nn-gons. The upper bound is a slight improvement of the result of Fiorini, Rothvoss and Tiwary [Extended Formulations for Polygons, Discrete Comput. Geom. 48(3), pp. 658-668, 2012]. The difference with their result is twofold: (i) our proof uses a purely algebraic argument while Fiorini et al. used a geometric argument, and (ii) we improve the base case allowing us to reduce their upper bound 2log2(n)2 \left\lceil \log_2(n) \right\rceil by one when 2k1<n2k1+2k22^{k-1} < n \leq 2^{k-1}+2^{k-2} for some integer kk. We conjecture that this new upper bound is tight, which is suggested by numerical experiments for small nn. Moreover, this improved upper bound allows us to close the gap with the best known lower bound for certain regular nn-gons (namely, 9n139 \leq n \leq 13 and 21n2421 \leq n \leq 24) hence allowing for the first time to determine their extension complexity.Comment: 20 pages, 3 figures. New contribution: improved lower bound for the boolean rank of the slack matrices of n-gon
    corecore