75,075 research outputs found

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Deep learning approach to Fourier ptychographic microscopy

    Full text link
    Convolutional neural networks (CNNs) have gained tremendous success in solving complex inverse problems. The aim of this work is to develop a novel CNN framework to reconstruct video sequence of dynamic live cells captured using a computational microscopy technique, Fourier ptychographic microscopy (FPM). The unique feature of the FPM is its capability to reconstruct images with both wide field-of-view (FOV) and high resolution, i.e. a large space-bandwidth-product (SBP), by taking a series of low resolution intensity images. For live cell imaging, a single FPM frame contains thousands of cell samples with different morphological features. Our idea is to fully exploit the statistical information provided by this large spatial ensemble so as to make predictions in a sequential measurement, without using any additional temporal dataset. Specifically, we show that it is possible to reconstruct high-SBP dynamic cell videos by a CNN trained only on the first FPM dataset captured at the beginning of a time-series experiment. Our CNN approach reconstructs a 12800X10800 pixels phase image using only ~25 seconds, a 50X speedup compared to the model-based FPM algorithm. In addition, the CNN further reduces the required number of images in each time frame by ~6X. Overall, this significantly improves the imaging throughput by reducing both the acquisition and computational times. The proposed CNN is based on the conditional generative adversarial network (cGAN) framework. Additionally, we also exploit transfer learning so that our pre-trained CNN can be further optimized to image other cell types. Our technique demonstrates a promising deep learning approach to continuously monitor large live-cell populations over an extended time and gather useful spatial and temporal information with sub-cellular resolution

    An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Full text link
    The error pattern correcting code (EPCC) can be constructed to provide a syndrome decoding table targeting the dominant error events of an inter-symbol interference channel at the output of the Viterbi detector. For the size of the syndrome table to be manageable and the list of possible error events to be reasonable in size, the codeword length of EPCC needs to be short enough. However, the rate of such a short length code will be too low for hard drive applications. To accommodate the required large redundancy, it is possible to record only a highly compressed function of the parity bits of EPCC's tensor product with a symbol correcting code. In this paper, we show that the proposed tensor error-pattern correcting code (T-EPCC) is linear time encodable and also devise a low-complexity soft iterative decoding algorithm for EPCC's tensor product with q-ary LDPC (T-EPCC-qLDPC). Simulation results show that T-EPCC-qLDPC achieves almost similar performance to single-level qLDPC with a 1/2 KB sector at 50% reduction in decoding complexity. Moreover, 1 KB T-EPCC-qLDPC surpasses the performance of 1/2 KB single-level qLDPC at the same decoder complexity.Comment: Hakim Alhussien, Jaekyun Moon, "An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Deep learning approach to Fourier ptychographic microscopy

    Full text link
    Convolutional neural networks (CNNs) have gained tremendous success in solving complex inverse problems. The aim of this work is to develop a novel CNN framework to reconstruct video sequences of dynamic live cells captured using a computational microscopy technique, Fourier ptychographic microscopy (FPM). The unique feature of the FPM is its capability to reconstruct images with both wide field-of-view (FOV) and high resolution, i.e. a large space-bandwidth-product (SBP), by taking a series of low resolution intensity images. For live cell imaging, a single FPM frame contains thousands of cell samples with different morphological features. Our idea is to fully exploit the statistical information provided by these large spatial ensembles so as to make predictions in a sequential measurement, without using any additional temporal dataset. Specifically, we show that it is possible to reconstruct high-SBP dynamic cell videos by a CNN trained only on the first FPM dataset captured at the beginning of a time-series experiment. Our CNN approach reconstructs a 12800×10800 pixel phase image using only ∼25 seconds, a 50× speedup compared to the model-based FPM algorithm. In addition, the CNN further reduces the required number of images in each time frame by ∼ 6×. Overall, this significantly improves the imaging throughput by reducing both the acquisition and computational times. The proposed CNN is based on the conditional generative adversarial network (cGAN) framework. We further propose a mixed loss function that combines the standard image domain loss and a weighted Fourier domain loss, which leads to improved reconstruction of the high frequency information. Additionally, we also exploit transfer learning so that our pre-trained CNN can be further optimized to image other cell types. Our technique demonstrates a promising deep learning approach to continuously monitor large live-cell populations over an extended time and gather useful spatial and temporal information with sub-cellular resolution.We would like to thank NVIDIA Corporation for supporting us with the GeForce Titan Xp through the GPU Grant Program. (NVIDIA Corporation; GeForce Titan Xp through the GPU Grant Program)First author draf

    Particle Swarm Optimization Framework for Low Power Testing of VLSI Circuits

    Full text link
    Power dissipation in sequential circuits is due to increased toggling count of Circuit under Test, which depends upon test vectors applied. If successive test vectors sequences have more toggling nature then it is sure that toggling rate of flip flops is higher. Higher toggling for flip flops results more power dissipation. To overcome this problem, one method is to use GA to have test vectors of high fault coverage in short interval, followed by Hamming distance management on test patterns. This approach is time consuming and needs more efforts. Another method which is purposed in this paper is a PSO based Frame Work to optimize power dissipation. Here target is to set the entire test vector in a frame for time period 'T', so that the frame consists of all those vectors strings which not only provide high fault coverage but also arrange vectors in frame to produce minimum toggling

    Thermal barrier coating on high temperature industrial gas turbine engines

    Get PDF
    The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated

    Is There Still Merit in the Merit Order Stack? The Impact of Dynamic Constraints on Optimal Plant Mix

    Get PDF

    Flow Visualization Techniques for Flight Research

    Get PDF
    In-flight flow visualization techniques used at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and its predecessor organizations are described. Results from flight tests which visualized surface flows using flow cones, tufts, oil flows, liquid crystals, sublimating chemicals, and emitted fluids have been obtained. Off-surface flow visualization of vortical flow has been obtained from natural condensation and two methods using smoke generator systems. Recent results from flight tests at NASA Langley Research Center using a propylene glycol smoker and an infrared imager are also included. Results from photo-chase aircraft, onboard and postflight photography are presented
    • …
    corecore