387 research outputs found

    Adaptive Sampling for Nonlinear Dimensionality Reduction Based on Manifold Learning

    Get PDF
    We make use of the non-intrusive dimensionality reduction method Isomap in order to emulate nonlinear parametric flow problems that are governed by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning approach that provides a low-dimensional embedding space that is approximately isometric to the manifold that is assumed to be formed by the high-fidelity Navier-Stokes flow solutions under smooth variations of the inflow conditions. The focus of the work at hand is the adaptive construction and refinement of the Isomap emulator: We exploit the non-Euclidean Isomap metric to detect and fill up gaps in the sampling in the embedding space. The performance of the proposed manifold filling method will be illustrated by numerical experiments, where we consider nonlinear parameter-dependent steady-state Navier-Stokes flows in the transonic regime

    Fault Diagnosis of Supervision and Homogenization Distance Based on Local Linear Embedding Algorithm

    Get PDF
    In view of the problems of uneven distribution of reality fault samples and dimension reduction effect of locally linear embedding (LLE) algorithm which is easily affected by neighboring points, an improved local linear embedding algorithm of homogenization distance (HLLE) is developed. The method makes the overall distribution of sample points tend to be homogenization and reduces the influence of neighboring points using homogenization distance instead of the traditional Euclidean distance. It is helpful to choose effective neighboring points to construct weight matrix for dimension reduction. Because the fault recognition performance improvement of HLLE is limited and unstable, the paper further proposes a new local linear embedding algorithm of supervision and homogenization distance (SHLLE) by adding the supervised learning mechanism. On the basis of homogenization distance, supervised learning increases the category information of sample points so that the same category of sample points will be gathered and the heterogeneous category of sample points will be scattered. It effectively improves the performance of fault diagnosis and maintains stability at the same time. A comparison of the methods mentioned above was made by simulation experiment with rotor system fault diagnosis, and the results show that SHLLE algorithm has superior fault recognition performance

    Numerical simulation and manifold learning for the vibration of molten steel draining from a ladle

    Get PDF
    To ensure the purity of molten steel and maintain the continuity of casting, the slag detection utilizing vibration signals has been widely applied in the continuous casting. Due to the non-stationary and non-linear flow behavior of molten steel, it is hard to construct a reliable criterion to identify the slag entrapment from the vibration signals. In this paper, a numerical simulation model is built to reveal the flow process of molten steel draining from a ladle. By the analysis of the volume fraction, path line and velocity field, the flow state at the moment of slag outflowing is captured. According to the simulated results, a method based on the manifold learning is proposed to deal with the vibration signals. Firstly, the non-stationary vibration signals are decomposed into sub-bands by the continuous wavelet transform and the energy of the signal component at each wavelet scale is calculated to constitute the high dimensional feature space. Then, a manifold learning algorithm called local target space alignment (LTSA) is employed to extract the non-linear principal manifold of the feature space. Finally, the abnormal spectral energy distribution caused by slag entrapment is indicated by the one-dimensional principal manifold. The proposed method is evaluated by the vibration acceleration signals acquired from a steel ladle of 60 tons. Results show that the slag entrapment is exactly and timely identified

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Dimensionality Reduction by Weighted Connections between Neighborhoods

    Get PDF
    Dimensionality reduction is the transformation of high-dimensional data into a meaningful representation of reduced dimensionality. This paper introduces a dimensionality reduction technique by weighted connections between neighborhoods to improve K-Isomap method, attempting to preserve perfectly the relationships between neighborhoods in the process of dimensionality reduction. The validity of the proposal is tested by three typical examples which are widely employed in the algorithms based on manifold. The experimental results show that the local topology nature of dataset is preserved well while transforming dataset in high-dimensional space into a new dataset in low-dimensionality by the proposed method
    • …
    corecore