14 research outputs found

    Distributed Failure Restoration for Asynchronous Transfer Mode (ATM) Tactical Communication Networks

    Get PDF
    Asynchronous Transfer Mode (A TM) is an attractive choice for future military communication systems because it can provide high throughput and support multi-service applications. Furthermore its use is consistent with the 'off the shelf technology policy that is currently operated by the Defence Engineering Research Agency of Great Britain. However, A TM has been developed as a civil standard and is designed to operate in network infrastructures with very low failure rates. In contrast, tactical networks are much less reliable. Indeed tactical networks operate on the premise that failures, particularly node failures, are expected. Hence, efficient, automatic failure restoration schemes are essential if an A TM based tactical network is to remain operational. The main objective of this research is the proposal and verification of one or more new restoration algorithms that meet the specific requirements of tactical networks. The aspects of ATM networks that influence restoration algorithms' implementation are discussed. In particular, the features of A TM networks such as the concept of Virtual Paths Virtual Channels and OAM (Operation And Maintenance) mechanisms that facilitate implementation of efficient restoration techniques. The unique characteristics of tactical networks and their impact on restoration are also presented. A significant part of the research was the study and evaluation of existing approaches to failure restoration in civil networks. A critical analysis of the suitability of these approaches to the tactical environment shows no one restoration algorithm fully meets the requirements of tactical networks. Consequently, two restoration algorithms for tactical A TM networks, DRA-TN (Dynamic Restoration Algorithm for Tactical Networks) and PPR-TN (Pre-planned Restoration Algorithm for Tactical Networks), are proposed and described in detail. Since the primary concern of restoration in tactical networks is the recovery of high priority connections the proposed algorithms attempt to restore high-priority connections by disrupting low-priority calls. Also, a number of additional mechanisms are proposed to reduce the use of bandwidth, which is a scarce resource in tactical networks. It is next argued that software simulation is the most appropriate method to prove the consistency of the proposed algorithms, assess their performance and test them on different network topologies as well as traffic and failure conditions. For this reason a simulation software package was designed and built specifically to model the proposed restoration algorithms. The design of the package is presented in detail and the most important implementation issues are discussed. The proposed restoration algorithms are modelled on three network topologies under various traffic loads, and their performance compared against the performance of known algorithms proposed for civil networks. It is shown that DRA-TN and PPR-TN provide better restoration of higher priority traffic. Furthermore, as the traffic load increases the relative performance of the DRA-TN and PPR-TN algorithms increases. The DRA-TN and PPR-TN algorithms are also compared and their advantages and disadvantages noted. Also, recommendations are given about the applicability of the proposed algorithms, and some practical implementation issues are discussed. The number of problems that need further study are briefly described.Defence Engineering Research Agency of Great Britai

    Design and protection algorithms for path level aggregation of traffic in WDM metro optical networks

    Get PDF
    Wavelength Division Multiplexing (WDM) promises to offer a cost effective and scalable solution to meet the emerging demands of the Internet. WDM splits the tremendous bandwidth latent in a fiber into multiple non-overlapping wavelength channels, each of which can be operated at the peak electronic rate. Commercial systems with 128 wavelengths and transmission rates of up to 40 Gbps per wavelength have been made possible using state of the art optical technologies to deal with physical impairments. Systems with higher capacities are likely to evolve in the future. The end user requirements for bandwidth, on the other hand, have been ranging from 155 Mbps to 2.5 Gbps. Dedicating a wavelength for each end user will lead to severe underutilization of WDM channels. This brings to forefront the requirement for sharing of bandwidth in a wavelength among multiple end users.;The concept of wavelength sharing among multiple clients is called grooming. Grooming can be done purely at the optical layer (optical grooming) or it can be done with support from the client layer (electronic grooming). The advantage of all optical grooming is the ease of scalability due to its transparency as opposed to electronic grooming which is constrained by electronic bottlenecks. Efforts towards enhancing optical grooming is pursued through increasing optical switching speeds. However, technologies to make optical switches with high speeds, large port counts and low insertion losses have been elusive and may continue to remain so in the near future.;Recently, there have been some research into designing new architectures and protocols focused on optical grooming without resorting to fast optical switching. Typically, this is achieved in three steps: (1) configure the circuit in the form of a path or a tree; (2) use optical devices like couplers or splitters to allow multiple transmitters and/or receivers to share the same circuit; and (3) provide an arbitration mechanism to avoid contention among end users of the circuit. This transparent sharing of the wavelength channel utilizes the network resources better than the conventional low-speed circuit switched approaches. Consequently, it becomes important to quantify the improvement in achieved performance and evaluate if the reaped benefits justify the cost of the required additional hardware and software.;The contribution of this thesis is two fold: (1) developing a new architecture called light-trails as an IP based solution for next generation WDM optical networks, and (2) designing a unified framework to model Path Level Aggregation of Traffic in metrO Optical Networks (PLATOONs). The algorithms suggested here have three features: (1) accounts for four different path level aggregation strategies---namely, point to point (for example, lightpaths), point to multi-point (for example, source based light-trails), multi-point to point (for example, destination based light-trails) and multi-point to multi-point (for example, light-trails); (2) incorporates heterogenous switching architectures; and (3) accommodates multi-rate traffic. Algorithms for network design and survivability are developed for PLATOONs in the presence of both static and dynamic traffic. Connection level dedicated/shared, segregated/mixed protection schemes are formulated for single link failures in the presence of static and dynamic traffic. A simple medium access control protocol that avoids collisions when the channel is shared by multiple clients is also proposed.;Based on extensive simulations, we conclude that, for the studied scenarios, (1) when client layer has no electronic grooming capabilities, light-trails (employing multi-point to multi-point aggregation strategy) perform several orders of magnitude better than lightpaths and (2) when client layer has full electronic grooming capabilities, source based light-trails (employing point to multi-point aggregation strategy) perform the best in wavelength limited scenarios and lightpaths perform the best in transceiver limited scenarios.;The algorithms that are developed here will be helpful in designing optical networks that deploy path level aggregation strategies. The proposed ideas will impact the design of transparent, high-speed all-optical networks.</p

    Journal of Telecommunications and Information Technology, 2001, nr 2

    Get PDF
    kwartalni

    Extending OWns to include protection functionality

    Get PDF
    The objective of this dissertation is to enhance the functionality of an existing simulation package that is used to simulate fiber optic networks. These enhancements include the capability to simulate protection mechanisms following link failure, which is a necessity in real-world optical networks to ensure the continued flow of information following a failure in a part of the network. The capability for network traffic to choose from additional paths is also an addition to the software. The enhanced, as well as the original simulation software, are open source: this allows anyone to freely modify and improve the source code to suit his or her requirements. This dissertation will focus on mesh-based optical network topologies, which are commonly found in regional optical backbone networks, but which are also increasingly found in metropolitan areas. The regional networks all make use of wavelength division multiplexing (WDM), which consists of putting multiple different wavelengths of light on the same physical fiber. A single fiber breakage will therefore disrupt multiple fiber-optic connections. A fiber-optic network designer has to satisfy various conflicting requirements when designing a network: it must satisfy current and predicted future traffic requirements, it must be immune to equipment failure, but it must also be as inexpensive as possible. The network designer therefore has to evaluate different topologies and scenarios, and a good network simulator will provide invaluable assistance in finding an optimal solution. Protection and restoration need to be looked at in conjunction with routing and wavelength assignment (RWA), to ensure that resources in a network are used at maximum efficiency. Connection restoration time will also be looked at: this should be minimised to ensure minimal network downtime and ensuing loss of revenue. The chosen alternate connection path should also be as short as possible to minimise use of resources and maximise the carrying capacity of the network. Blocking probability (the inability to establish a connection due to a congested network) is a crucial factor and is also investigated. The topologies investigated in this dissertation consist of various mesh based real-world regional WDM fiber-optic networks. The impact of various link failures, the addition of additional alternate paths, as well as the effect of a protection mechanism on these topologies are also investigated. The proposed goals were all successfully achieved. The capability of simulating single as well as multiple link failures was introduced to the simulation package. The blocking probability of various network topologies was compared to each other in the presence of link failures. Success was also achieved in the introduction of a third alternate path to the simulation package.Dissertation (MEng(Electronic))--University of Pretoria, 2005.Electrical, Electronic and Computer Engineeringunrestricte

    Effective fiber bandwidth utilization in TDM WDM optical networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Broadband facts, fiction and urban myths

    Full text link

    Optical flow switched networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 253-279).In the four decades since optical fiber was introduced as a communications medium, optical networking has revolutionized the telecommunications landscape. It has enabled the Internet as we know it today, and is central to the realization of Network-Centric Warfare in the defense world. Sustained exponential growth in communications bandwidth demand, however, is requiring that the nexus of innovation in optical networking continue, in order to ensure cost-effective communications in the future. In this thesis, we present Optical Flow Switching (OFS) as a key enabler of scalable future optical networks. The general idea behind OFS-agile, end-to-end, all-optical connections-is decades old, if not as old as the field of optical networking itself. However, owing to the absence of an application for it, OFS remained an underdeveloped idea-bereft of how it could be implemented, how well it would perform, and how much it would cost relative to other architectures. The contributions of this thesis are in providing partial answers to these three broad questions. With respect to implementation, we address the physical layer design of OFS in the metro-area and access, and develop sensible scheduling algorithms for OFS communication. Our performance study comprises a comparative capacity analysis for the wide-area, as well as an analytical approximation of the throughput-delay tradeoff offered by OFS for inter-MAN communication. Lastly, with regard to the economics of OFS, we employ an approximate capital expenditure model, which enables a throughput-cost comparison of OFS with other prominent candidate architectures. Our conclusions point to the fact that OFS offers significant advantage over other architectures in economic scalability.(cont.) In particular, for sufficiently heavy traffic, OFS handles large transactions at far lower cost than other optical network architectures. In light of the increasing importance of large transactions in both commercial and defense networks, we conclude that OFS may be crucial to the future viability of optical networking.by Guy E. Weichenberg.Ph.D
    corecore