2,832 research outputs found

    Fault tolerant architectures for integrated aircraft electronics systems

    Get PDF
    Work into possible architectures for future flight control computer systems is described. Ada for Fault-Tolerant Systems, the NETS Network Error-Tolerant System architecture, and voting in asynchronous systems are covered

    A Switch Architecture for Real-Time Multimedia Communications

    Get PDF
    In this paper we present a switch that can be used to transfer multimedia type of trafJic. The switch provides a guaranteed throughput and a bounded latency. We focus on the design of a prototype Switching Element using the new technology opportunities being offered today. The architecture meets the multimedia requirements but still has a low complexity and needs a minimum amount of hardware. A main item of this paper will be the background of the architectural design decisions made. These include the interconnection topology, buffer organization, routing and scheduling. The implementation of the switching fabric with FPGAs, allows us to experiment with switching mode, routing strategy and scheduling policy in a multimedia environment. The witching elements are interconnected in a Kautz topology. Kautz graphs have interesting properties such as: a small diametec the degree is independent of the network size, the network is fault-tolerant and has a simple routing algorithm

    Algorithms and complexity analyses for some combinational optimization problems

    Get PDF
    The main focus of this dissertation is on classical combinatorial optimization problems in two important areas: scheduling and network design. In the area of scheduling, the main interest is in problems in the master-slave model. In this model, each machine is either a master machine or a slave machine. Each job is associated with a preprocessing task, a slave task and a postprocessing task that must be executed in this order. Each slave task has a dedicated slave machine. All the preprocessing and postprocessing tasks share a single master machine or the same set of master machines. A job may also have an arbitrary release time before which the preprocessing task is not available to be processed. The main objective in this dissertation is to minimize the total completion time or the makespan. Both the complexity and algorithmic issues of these problems are considered. It is shown that the problem of minimizing the total completion time is strongly NP-hard even under severe constraints. Various efficient algorithms are designed to minimize the total completion time under various scenarios. In the area of network design, the survivable network design problems are studied first. The input for this problem is an undirected graph G = (V, E), a non-negative cost for each edge, and a nonnegative connectivity requirement ruv for every (unordered) pair of vertices &ruv. The goal is to find a minimum-cost subgraph in which each pair of vertices u,v is joined by at least ruv edge (vertex)-disjoint paths. A Polynomial Time Approximation Scheme (PTAS) is designed for the problem when the graph is Euclidean and the connectivity requirement of any point is at most 2. PTASs or Quasi-PTASs are also designed for 2-edge-connectivity problem and biconnectivity problem and their variations in unweighted or weighted planar graphs. Next, the problem of constructing geometric fault-tolerant spanners with low cost and bounded maximum degree is considered. The first result shows that there is a greedy algorithm which constructs fault-tolerant spanners having asymptotically optimal bounds for both the maximum degree and the total cost at the same time. Then an efficient algorithm is developed which finds fault-tolerant spanners with asymptotically optimal bound for the maximum degree and almost optimal bound for the total cost

    Efficient fault-tolerant routing in multihop optical WDM networks

    Get PDF
    This paper addresses the problem of efficient routing in unreliable multihop optical networks supported by Wavelength Division Multiplexing (WDM). We first define a new cost model for routing in (optical) WDM networks that is more general than the existing models. Our model takes into consideration not only the cost of wavelength access and conversion but also the delay for queuing signals arriving at different input channels that share the same output channel at the same node. We then propose a set of efficient algorithms in a reliable WDM network on the new cost model for each of the three most important communication patterns - multiple point-to-point routing, multicast, and multiple multicast. Finally, we show how to obtain a set of efficient algorithms in an unreliable WDM network with up to f faulty optical channels and wavelength conversion gates. Our strategy is to first enhance the physical paths constructed by the algorithms for reliable networks to ensure success of fault-tolerant routing, and then to route among the enhanced paths to establish a set of fault-free physical routes to complete the corresponding routing request for each of the communication patterns.published_or_final_versio

    Routing on the Channel Dependency Graph:: A New Approach to Deadlock-Free, Destination-Based, High-Performance Routing for Lossless Interconnection Networks

    Get PDF
    In the pursuit for ever-increasing compute power, and with Moore's law slowly coming to an end, high-performance computing started to scale-out to larger systems. Alongside the increasing system size, the interconnection network is growing to accommodate and connect tens of thousands of compute nodes. These networks have a large influence on total cost, application performance, energy consumption, and overall system efficiency of the supercomputer. Unfortunately, state-of-the-art routing algorithms, which define the packet paths through the network, do not utilize this important resource efficiently. Topology-aware routing algorithms become increasingly inapplicable, due to irregular topologies, which either are irregular by design, or most often a result of hardware failures. Exchanging faulty network components potentially requires whole system downtime further increasing the cost of the failure. This management approach becomes more and more impractical due to the scale of today's networks and the accompanying steady decrease of the mean time between failures. Alternative methods of operating and maintaining these high-performance interconnects, both in terms of hardware- and software-management, are necessary to mitigate negative effects experienced by scientific applications executed on the supercomputer. However, existing topology-agnostic routing algorithms either suffer from poor load balancing or are not bounded in the number of virtual channels needed to resolve deadlocks in the routing tables. Using the fail-in-place strategy, a well-established method for storage systems to repair only critical component failures, is a feasible solution for current and future HPC interconnects as well as other large-scale installations such as data center networks. Although, an appropriate combination of topology and routing algorithm is required to minimize the throughput degradation for the entire system. This thesis contributes a network simulation toolchain to facilitate the process of finding a suitable combination, either during system design or while it is in operation. On top of this foundation, a key contribution is a novel scheduling-aware routing, which reduces fault-induced throughput degradation while improving overall network utilization. The scheduling-aware routing performs frequent property preserving routing updates to optimize the path balancing for simultaneously running batch jobs. The increased deployment of lossless interconnection networks, in conjunction with fail-in-place modes of operation and topology-agnostic, scheduling-aware routing algorithms, necessitates new solutions to solve the routing-deadlock problem. Therefore, this thesis further advances the state-of-the-art by introducing a novel concept of routing on the channel dependency graph, which allows the design of an universally applicable destination-based routing capable of optimizing the path balancing without exceeding a given number of virtual channels, which are a common hardware limitation. This disruptive innovation enables implicit deadlock-avoidance during path calculation, instead of solving both problems separately as all previous solutions

    Methods to Improve Applicability and Efficiency of Distributed Data-Centric Compute Frameworks

    Get PDF
    The success of modern applications depends on the insights they collect from their data repositories. Data repositories for such applications currently exceed exabytes and are rapidly increasing in size, as they collect data from varied sources - web applications, mobile phones, sensors and other connected devices. Distributed storage and data-centric compute frameworks have been invented to store and analyze these large datasets. This dissertation focuses on extending the applicability and improving the efficiency of distributed data-centric compute frameworks

    Robust Assignments via Ear Decompositions and Randomized Rounding

    Get PDF
    Many real-life planning problems require making a priori decisions before all parameters of the problem have been revealed. An important special case of such problem arises in scheduling problems, where a set of tasks needs to be assigned to the available set of machines or personnel (resources), in a way that all tasks have assigned resources, and no two tasks share the same resource. In its nominal form, the resulting computational problem becomes the \emph{assignment problem} on general bipartite graphs. This paper deals with a robust variant of the assignment problem modeling situations where certain edges in the corresponding graph are \emph{vulnerable} and may become unavailable after a solution has been chosen. The goal is to choose a minimum-cost collection of edges such that if any vulnerable edge becomes unavailable, the remaining part of the solution contains an assignment of all tasks. We present approximation results and hardness proofs for this type of problems, and establish several connections to well-known concepts from matching theory, robust optimization and LP-based techniques.Comment: Full version of ICALP 2016 pape

    Shortest, Fastest, and Foremost Broadcast in Dynamic Networks

    Full text link
    Highly dynamic networks rarely offer end-to-end connectivity at a given time. Yet, connectivity in these networks can be established over time and space, based on temporal analogues of multi-hop paths (also called {\em journeys}). Attempting to optimize the selection of the journeys in these networks naturally leads to the study of three cases: shortest (minimum hop), fastest (minimum duration), and foremost (earliest arrival) journeys. Efficient centralized algorithms exists to compute all cases, when the full knowledge of the network evolution is given. In this paper, we study the {\em distributed} counterparts of these problems, i.e. shortest, fastest, and foremost broadcast with termination detection (TDB), with minimal knowledge on the topology. We show that the feasibility of each of these problems requires distinct features on the evolution, through identifying three classes of dynamic graphs wherein the problems become gradually feasible: graphs in which the re-appearance of edges is {\em recurrent} (class R), {\em bounded-recurrent} (B), or {\em periodic} (P), together with specific knowledge that are respectively nn (the number of nodes), Δ\Delta (a bound on the recurrence time), and pp (the period). In these classes it is not required that all pairs of nodes get in contact -- only that the overall {\em footprint} of the graph is connected over time. Our results, together with the strict inclusion between PP, BB, and RR, implies a feasibility order among the three variants of the problem, i.e. TDB[foremost] requires weaker assumptions on the topology dynamics than TDB[shortest], which itself requires less than TDB[fastest]. Reversely, these differences in feasibility imply that the computational powers of RnR_n, BΔB_\Delta, and PpP_p also form a strict hierarchy
    • 

    corecore