7,602 research outputs found

    Scalable Image Retrieval by Sparse Product Quantization

    Get PDF
    Fast Approximate Nearest Neighbor (ANN) search technique for high-dimensional feature indexing and retrieval is the crux of large-scale image retrieval. A recent promising technique is Product Quantization, which attempts to index high-dimensional image features by decomposing the feature space into a Cartesian product of low dimensional subspaces and quantizing each of them separately. Despite the promising results reported, their quantization approach follows the typical hard assignment of traditional quantization methods, which may result in large quantization errors and thus inferior search performance. Unlike the existing approaches, in this paper, we propose a novel approach called Sparse Product Quantization (SPQ) to encoding the high-dimensional feature vectors into sparse representation. We optimize the sparse representations of the feature vectors by minimizing their quantization errors, making the resulting representation is essentially close to the original data in practice. Experiments show that the proposed SPQ technique is not only able to compress data, but also an effective encoding technique. We obtain state-of-the-art results for ANN search on four public image datasets and the promising results of content-based image retrieval further validate the efficacy of our proposed method.Comment: 12 page

    Compressing High-Dimensional Data Spaces Using Non-Differential Augmented Vector Quantization

    Get PDF
    query processing times and space requirements. Database compression has been discovered to alleviate the I/O bottleneck, reduce disk space, improve disk access speed, speed up query, reduce overall retrieval time and increase the effective I/O bandwidth. However, random access to individual tuples in a compressed database is very difficult to achieve with most available compression techniques. We propose a lossless compression technique called non-differential augmented vector quantization, a close variant of the novel augmented vector quantization. The technique is applicable to a collection of tuples and especially effective for tuples with many low to medium cardinality fields. In addition, the technique supports standard database operations, permits very fast random access and atomic decompression of tuples in large collections. The technique maps a database relation into a static bitmap index cached access structure. Consequently, we were able to achieve substantial savings in space by storing each database tuple as a bit value in the computer memory. Important distinguishing characteristics of our technique is that individual tuples can be compressed and decompressed, rather than a full page or entire relation at a time, (b) the information needed for tuple compression and decompression can reside in the memory or at worst in a single page. Promising application domains include decision support systems, statistical databases and life databases with low cardinality fields and possibly no text field

    RLFC: Random Access Light Field Compression using Key Views and Bounded Integer Encoding

    Full text link
    We present a new hierarchical compression scheme for encoding light field images (LFI) that is suitable for interactive rendering. Our method (RLFC) exploits redundancies in the light field images by constructing a tree structure. The top level (root) of the tree captures the common high-level details across the LFI, and other levels (children) of the tree capture specific low-level details of the LFI. Our decompressing algorithm corresponds to tree traversal operations and gathers the values stored at different levels of the tree. Furthermore, we use bounded integer sequence encoding which provides random access and fast hardware decoding for compressing the blocks of children of the tree. We have evaluated our method for 4D two-plane parameterized light fields. The compression rates vary from 0.08 - 2.5 bits per pixel (bpp), resulting in compression ratios of around 200:1 to 20:1 for a PSNR quality of 40 to 50 dB. The decompression times for decoding the blocks of LFI are 1 - 3 microseconds per channel on an NVIDIA GTX-960 and we can render new views with a resolution of 512X512 at 200 fps. Our overall scheme is simple to implement and involves only bit manipulations and integer arithmetic operations.Comment: Accepted for publication at Symposium on Interactive 3D Graphics and Games (I3D '19
    • …
    corecore