3,435 research outputs found

    Induction Generator in Wind Power Systems

    Get PDF
    Wind power is the fastest growing renewable energy and is promising as the number one source of clean energy in the near future. Among various generators used to convert wind energy, the induction generator has attracted more attention due to its lower cost, lower requirement of maintenance, variable speed, higher energy capture efficiency, and improved power quality [1-2]. Generally, there are two types of induction generators widely used in wind power systems – Squirrel-Cage Induction Generator (SCIG) and Doubly-Fed Induction Generator (DFIG). The straightforward power conversion technique using SCIG is widely accepted in fixed-speed applications with less emphasis on the high efficiency and control of power flow. However, such direct connection with grid would allow the speed to vary in a very narrow range and thus limit the wind turbine utilization and power output. Another major problem with SCIG wind system is the source of reactive power; that is, an external reactive power compensator is required to hold distribution line voltage and prevent whole system from overload. On the other hand, the DFIG with variable-speed ability has higher energy capture efficiency and improved power quality, and thus dominates the large-scale power conversion applications. With the advent of power electronics techniques, a back-to-back converter, which consists of two bidirectional converters and a dc-link, acts as an optimal operation tracking interface between DFIG and loads [3-5]. Field orientation control (FOC) is applied to both rotor- and stator-side converters to achieve desirable control on voltage and power [6,7]

    Enhancement of the direct power control applied to DFIG-WECS

    Get PDF
    This work is dedicated to the study of an improved direct control of powers of the doubly fed induction generator (DFIG) incorporated in a wind energy conversion system 'WECS'. The control method adopts direct power control 'DPC' because of its various advantages like the ease of implementation which allows decoupled regulation for active and reactive powers, as well as a good performance at transient and steady state without PI regulators and rotating coordinate transformations. To do this, the modeling of the turbine and generator is performed. Therefore, the Maximum Power Point Tracking (MPPT) technology is implemented to extract optimal power at variable wind speed conditions. Subsequently, an explanation of the said command is spread out as well as the principle of adjusting the active and reactive power according to the desired speed. Then, the estimation method of these two control variables will be presented as well as the adopted switching table of the hysteresis controller model used based on the model of the multilevel inverters. Finally, the robustness of the developed system will be analyzed with validation in Matlab / Simulink environment to illustrate the performance of this command

    Sensored and sensorless speed control methods for brushless doubly fed reluctance motors

    Get PDF
    The study considers aspects of scalar V/f control, vector control and direct torque (and flux) control (DTC) of the brushless doubly fed reluctance machine (BDFRM) as a promising cost-effective alternative to the existing technological solutions for applications with restricted variable speed capability such as large pumps and wind turbine generators. Apart from providing a comprehensive literature review and analysis of these control methods, the development and results of experimental verification, of an angular velocity observerbased DTC scheme for sensorless speed control of the BDFRM which, unlike most of the other DTC-concept applications, can perform well down to zero supply frequency of the inverter-fed winding, have also been presented in the study

    Influence of pole-pair combinations on the characteristics of the brushless doubly fed induction generator

    Get PDF
    The brushless doubly fed induction generator (BDFIG) is an alternative to the doubly fed induction generator (DFIG), widely used in wind turbines which avoids the need for brush gear and slip rings. The choice of pole numbers for the two stator windings present in the BDFIG sets the operating speed, typically in the medium speed range to eliminate a gearbox stage. This paper focuses on how both the total number of poles and the assignment of poles between the windings affect machine performance. Analytical expressions have been developed for parameters including pull-out torque, magnetizing current and back-iron depth. The results show that the pole count can be increased without unduly compromising pull-out torque and that in cases where more than one combination of pole number is acceptable only the back iron depth is significantly affected. In addition an output factor has been introduced to enable a direct comparison to be made with conventional DFIGs. The torque density of a brushless DFIG is compromised to a degree relative to a comparable DFIG as a consequence of the presence of two magnetic fields and finite element analysis is needed to achieve an optimized design. Finally, predictions of the performance of multi-MW machines are made based on data from an existing 250 kW machine which show that suitable efficiencies can be obtained and excessive control winding excitation can be avoided

    Flux observer algorithms for direct torque control of brushless doubly-fed reluctance machines

    Get PDF
    Direct Torque Control (DTC) has been extensively researched and applied to most AC machines during the last two decades. Its first application to the Brushless Doubly-Fed Reluctance Machine (BDFRM), a promising cost-effective candidate for drive and generator systems with limited variable speed ranges (such as large pumps or wind turbines), has only been reported a few years ago. However, the original DTC scheme has experienced flux estimation problems and compromised performance under the maximum torque per inverter ampere (MTPIA) conditions. This deficiency at low current and torque levels may be overcome and much higher accuracy achieved by alternative estimation approaches discussed in this paper using Kalman Filter (KF) and/or Sliding Mode Observer (SMO). Computer simulations accounting for real-time constraints (e.g. measurement noise, transducer DC offset etc.) have produced realistic results similar to those one would expect from an experimental setup

    Small-Signal Modelling and Analysis of Doubly-Fed Induction Generators in Wind Power Applications

    Get PDF
    The worldwide demand for more diverse and greener energy supply has had a significant impact on the development of wind energy in the last decades. From 2 GW in 1990, the global installed capacity has now reached about 100 GW and is estimated to grow to 1000 GW by 2025. As wind power penetration increases, it is important to investigate its effect on the power system. Among the various technologies available for wind energy conversion, the doubly-fed induction generator (DFIG) is one of the preferred solutions because it offers the advantages of reduced mechanical stress and optimised power capture thanks to variable speed operation. This work presents the small-signal modelling and analysis of the DFIG for power system stability studies. This thesis starts by reviewing the mathematical models of wind turbines with DFIG convenient for power system studies. Different approaches proposed in the literature for the modelling of the turbine, drive-train, generator, rotor converter and external power system are discussed. It is shown that the flexibility of the drive train should be represented by a two-mass model in the presence of a gearbox. In the analysis part, the steady-state behaviour of the DFIG is examined. Comparison is made with the conventional synchronous generators (SG) and squirrel-cage induction generators to highlight the differences between the machines. The initialisation of the DFIG dynamic variables and other operating quantities is then discussed. Various methods are briefly reviewed and a step-by-step procedure is suggested to avoid the iterative computations in initial condition mentioned in the literature. The dynamical behaviour of the DFIG is studied with eigenvalue analysis. Modal analysis is performed for both open-loop and closed-loop situations. The effect of parameters and operating point variations on small signal stability is observed. For the open-loop DFIG, conditions on machine parameters are obtained to ensure stability of the system. For the closed-loop DFIG, it is shown that the generator electrical transients may be neglected once the converter controls are properly tuned. A tuning procedure is proposed and conditions on proportional gains are obtained for stable electrical dynamics. Finally, small-signal analysis of a multi-machine system with both SG and DFIG is performed. It is shown that there is no common mode to the two types of generators. The result confirms that the DFIG does not introduce negative damping to the system, however it is also shown that the overall effect of the DFIG on the power system stability depends on several structural factors and a general statement as to whether it improves or detriorates the oscillatory stability of a system can not be made

    The use of doubly fed reluctance machines for large pumps and wind turbines

    Get PDF

    A simple maximum power point tracking based control strategy applied to a variable speed squirrel cage induction generator

    Get PDF
    This paper presents a comprehensive modelling and control study of a variable speed wind energy conversion system based on a squirrel-cage induction generator (SCIG). The mathematical model of the SCIG is derived in Park frame along with the indirect field oriented control (IFOC) scheme based on a proportional and integral speed controller. A simple maximum power point tracking strategy is used to determine the optimal speed under variable wind speed conditions which is then used as the reference in the IFOC scheme. Power flow between the supply and the inverter is regulated via simultaneous control of the active and reactive currents of the grid and the DC link voltage. The simulation results show that the proposed control technique is able to maximise the energy extracted from the wind during the simulation scenarios considered. The results also demonstrate good transient response characteristics in the decoupled real and reactive powers.Peer reviewedFinal Accepted Versio
    • …
    corecore