35,047 research outputs found

    Recursive Sketching For Frequency Moments

    Full text link
    In a ground-breaking paper, Indyk and Woodruff (STOC 05) showed how to compute FkF_k (for k>2k>2) in space complexity O(\mbox{\em poly-log}(n,m)\cdot n^{1-\frac2k}), which is optimal up to (large) poly-logarithmic factors in nn and mm, where mm is the length of the stream and nn is the upper bound on the number of distinct elements in a stream. The best known lower bound for large moments is Ξ©(log⁑(n)n1βˆ’2k)\Omega(\log(n)n^{1-\frac2k}). A follow-up work of Bhuvanagiri, Ganguly, Kesh and Saha (SODA 2006) reduced the poly-logarithmic factors of Indyk and Woodruff to O(log⁑2(m)β‹…(log⁑n+log⁑m)β‹…n1βˆ’2k)O(\log^2(m)\cdot (\log n+ \log m)\cdot n^{1-{2\over k}}). Further reduction of poly-log factors has been an elusive goal since 2006, when Indyk and Woodruff method seemed to hit a natural "barrier." Using our simple recursive sketch, we provide a different yet simple approach to obtain a O(log⁑(m)log⁑(nm)β‹…(log⁑log⁑n)4β‹…n1βˆ’2k)O(\log(m)\log(nm)\cdot (\log\log n)^4\cdot n^{1-{2\over k}}) algorithm for constant Ο΅\epsilon (our bound is, in fact, somewhat stronger, where the (log⁑log⁑n)(\log\log n) term can be replaced by any constant number of log⁑\log iterations instead of just two or three, thus approaching logβˆ—nlog^*n. Our bound also works for non-constant Ο΅\epsilon (for details see the body of the paper). Further, our algorithm requires only 44-wise independence, in contrast to existing methods that use pseudo-random generators for computing large frequency moments

    The quantum complexity of approximating the frequency moments

    Get PDF
    The kk'th frequency moment of a sequence of integers is defined as Fk=βˆ‘jnjkF_k = \sum_j n_j^k, where njn_j is the number of times that jj occurs in the sequence. Here we study the quantum complexity of approximately computing the frequency moments in two settings. In the query complexity setting, we wish to minimise the number of queries to the input used to approximate FkF_k up to relative error Ο΅\epsilon. We give quantum algorithms which outperform the best possible classical algorithms up to quadratically. In the multiple-pass streaming setting, we see the elements of the input one at a time, and seek to minimise the amount of storage space, or passes over the data, used to approximate FkF_k. We describe quantum algorithms for F0F_0, F2F_2 and F∞F_\infty in this model which substantially outperform the best possible classical algorithms in certain parameter regimes.Comment: 22 pages; v3: essentially published versio

    On Practical Algorithms for Entropy Estimation and the Improved Sample Complexity of Compressed Counting

    Full text link
    Estimating the p-th frequency moment of data stream is a very heavily studied problem. The problem is actually trivial when p = 1, assuming the strict Turnstile model. The sample complexity of our proposed algorithm is essentially O(1) near p=1. This is a very large improvement over the previously believed O(1/eps^2) bound. The proposed algorithm makes the long-standing problem of entropy estimation an easy task, as verified by the experiments included in the appendix

    Towards Optimal Moment Estimation in Streaming and Distributed Models

    Get PDF
    One of the oldest problems in the data stream model is to approximate the p-th moment ||X||_p^p = sum_{i=1}^n X_i^p of an underlying non-negative vector X in R^n, which is presented as a sequence of poly(n) updates to its coordinates. Of particular interest is when p in (0,2]. Although a tight space bound of Theta(epsilon^-2 log n) bits is known for this problem when both positive and negative updates are allowed, surprisingly there is still a gap in the space complexity of this problem when all updates are positive. Specifically, the upper bound is O(epsilon^-2 log n) bits, while the lower bound is only Omega(epsilon^-2 + log n) bits. Recently, an upper bound of O~(epsilon^-2 + log n) bits was obtained under the assumption that the updates arrive in a random order. We show that for p in (0, 1], the random order assumption is not needed. Namely, we give an upper bound for worst-case streams of O~(epsilon^-2 + log n) bits for estimating |X |_p^p. Our techniques also give new upper bounds for estimating the empirical entropy in a stream. On the other hand, we show that for p in (1,2], in the natural coordinator and blackboard distributed communication topologies, there is an O~(epsilon^-2) bit max-communication upper bound based on a randomized rounding scheme. Our protocols also give rise to protocols for heavy hitters and approximate matrix product. We generalize our results to arbitrary communication topologies G, obtaining an O~(epsilon^2 log d) max-communication upper bound, where d is the diameter of G. Interestingly, our upper bound rules out natural communication complexity-based approaches for proving an Omega(epsilon^-2 log n) bit lower bound for p in (1,2] for streaming algorithms. In particular, any such lower bound must come from a topology with large diameter

    Distributed Data Summarization in Well-Connected Networks

    Get PDF
    We study distributed algorithms for some fundamental problems in data summarization. Given a communication graph G of n nodes each of which may hold a value initially, we focus on computing sum_{i=1}^N g(f_i), where f_i is the number of occurrences of value i and g is some fixed function. This includes important statistics such as the number of distinct elements, frequency moments, and the empirical entropy of the data. In the CONGEST~ model, a simple adaptation from streaming lower bounds shows that it requires Omega~(D+ n) rounds, where D is the diameter of the graph, to compute some of these statistics exactly. However, these lower bounds do not hold for graphs that are well-connected. We give an algorithm that computes sum_{i=1}^{N} g(f_i) exactly in {tau_{G}} * 2^{O(sqrt{log n})} rounds where {tau_{G}} is the mixing time of G. This also has applications in computing the top k most frequent elements. We demonstrate that there is a high similarity between the GOSSIP~ model and the CONGEST~ model in well-connected graphs. In particular, we show that each round of the GOSSIP~ model can be simulated almost perfectly in O~({tau_{G}}) rounds of the CONGEST~ model. To this end, we develop a new algorithm for the GOSSIP~ model that 1 +/- epsilon approximates the p-th frequency moment F_p = sum_{i=1}^N f_i^p in O~(epsilon^{-2} n^{1-k/p}) roundsfor p >= 2, when the number of distinct elements F_0 is at most O(n^{1/(k-1)}). This result can be translated back to the CONGEST~ model with a factor O~({tau_{G}}) blow-up in the number of rounds
    • …
    corecore