3,688 research outputs found

    Segregating Event Streams and Noise with a Markov Renewal Process Model

    Get PDF
    DS and MP are supported by EPSRC Leadership Fellowship EP/G007144/1

    A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data

    Full text link
    Deducing the structure of neural circuits is one of the central problems of modern neuroscience. Recently-introduced calcium fluorescent imaging methods permit experimentalists to observe network activity in large populations of neurons, but these techniques provide only indirect observations of neural spike trains, with limited time resolution and signal quality. In this work we present a Bayesian approach for inferring neural circuitry given this type of imaging data. We model the network activity in terms of a collection of coupled hidden Markov chains, with each chain corresponding to a single neuron in the network and the coupling between the chains reflecting the network's connectivity matrix. We derive a Monte Carlo Expectation--Maximization algorithm for fitting the model parameters; to obtain the sufficient statistics in a computationally-efficient manner, we introduce a specialized blockwise-Gibbs algorithm for sampling from the joint activity of all observed neurons given the observed fluorescence data. We perform large-scale simulations of randomly connected neuronal networks with biophysically realistic parameters and find that the proposed methods can accurately infer the connectivity in these networks given reasonable experimental and computational constraints. In addition, the estimation accuracy may be improved significantly by incorporating prior knowledge about the sparseness of connectivity in the network, via standard L1_1 penalization methods.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS303 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    Integrative Modeling of Transcriptional Regulation in Response to Autoimmune Desease Therapies

    Get PDF
    Die rheumatoide Arthritis (RA) und die Multiple Sklerose (MS) werden allgemein als Autoimmunkrankheiten eingestuft. Zur Behandlung dieser Krankheiten werden immunmodulatorische Medikamente eingesetzt, etwa TNF-alpha-Blocker (z.B. Etanercept) im Falle der RA und IFN-beta-Präparate (z.B. Betaferon und Avonex) im Falle der MS. Bis heute sind die molekularen Mechanismen dieser Therapien weitestgehend unbekannt. Zudem ist ihre Wirksamkeit und Verträglichkeit bei einigen Patienten unzureichend. In dieser Arbeit wurde die transkriptionelle Antwort im Blut von Patienten auf jede dieser drei Therapien untersucht, um die Wirkungsweise dieser Medikamente besser zu verstehen. Dabei wurden Methoden der Netzwerkinferenz eingesetzt, mit dem Ziel, die genregulatorischen Netzwerke (GRNs) der in ihrer Expression veränderten Gene zu rekonstruieren. Ausgangspunkt dieser Analysen war jeweils ein Genexpressions- Datensatz. Daraus wurden zunächst Gene gefiltert, die nach Therapiebeginn hoch- oder herunterreguliert sind. Anschließend wurden die genregulatorischen Regionen dieser Gene auf Transkriptionsfaktor-Bindestellen (TFBS) analysiert. Um schließlich GRN-Modelle abzuleiten, wurde ein neuer Netzwerkinferenz-Algorithmus (TILAR) verwendet. TILAR unterscheidet zwischen Genen und TF und beschreibt die regulatorischen Effekte zwischen diesen durch ein lineares Gleichungssystem. TILAR erlaubt dabei Vorwissen über Gen-TF- und TF-Gen-Interaktionen einzubeziehen. Im Ergebnis wurden komplexe Netzwerkstrukturen rekonstruiert, welche die regulatorischen Beziehungen zwischen den Genen beschreiben, die im Verlauf der Therapien differentiell exprimiert sind. Für die Etanercept-Therapie wurde ein Teilnetz gefunden, das Gene enthält, die niedrigere Expressionslevel bei RA-Patienten zeigen, die sehr gut auf das Medikament ansprechen. Die Analyse von GRNs kann somit zu einem besseren Verständnis Therapie-assoziierter Prozesse beitragen und transkriptionelle Unterschiede zwischen Patienten aufzeigen

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    Improved Bayesian methods for detecting recombination and rate heterogeneity in DNA sequence alignments

    Get PDF
    DNA sequence alignments are usually not homogeneous. Mosaic structures may result as a consequence of recombination or rate heterogeneity. Interspecific recombination, in which DNA subsequences are transferred between different (typically viral or bacterial) strains may result in a change of the topology of the underlying phylogenetic tree. Rate heterogeneity corresponds to a change of the nucleotide substitution rate. Various methods for simultaneously detecting recombination and rate heterogeneity in DNA sequence alignments have recently been proposed, based on complex probabilistic models that combine phylogenetic trees with factorial hidden Markov models or multiple changepoint processes. The objective of my thesis is to identify potential shortcomings of these models and explore ways of how to improve them. One shortcoming that I have identified is related to an approximation made in various recently proposed Bayesian models. The Bayesian paradigm requires the solution of an integral over the space of parameters. To render this integration analytically tractable, these models assume that the vectors of branch lengths of the phylogenetic tree are independent among sites. While this approximation reduces the computational complexity considerably, I show that it leads to the systematic prediction of spurious topology changes in the Felsenstein zone, that is, the area in the branch lengths configuration space where maximum parsimony consistently infers the wrong topology due to long-branch attraction. I demonstrate these failures by using two Bayesian hypothesis tests, based on an inter- and an intra-model approach to estimating the marginal likelihood. I then propose a revised model that addresses these shortcomings, and demonstrate its improved performance on a set of synthetic DNA sequence alignments systematically generated around the Felsenstein zone. The core model explored in my thesis is a phylogenetic factorial hidden Markov model (FHMM) for detecting two types of mosaic structures in DNA sequence alignments, related to recombination and rate heterogeneity. The focus of my work is on improving the modelling of the latter aspect. Earlier research efforts by other authors have modelled different degrees of rate heterogeneity with separate hidden states of the FHMM. Their work fails to appreciate the intrinsic difference between two types of rate heterogeneity: long-range regional effects, which are potentially related to differences in the selective pressure, and the short-term periodic patterns within the codons, which merely capture the signature of the genetic code. I have improved these earlier phylogenetic FHMMs in two respects. Firstly, by sampling the rate vector from the posterior distribution with RJMCMC I have made the modelling of regional rate heterogeneity more flexible, and I infer the number of different degrees of divergence directly from the DNA sequence alignment, thereby dispensing with the need to arbitrarily select this quantity in advance. Secondly, I explicitly model within-codon rate heterogeneity via a separate rate modification vector. In this way, the within-codon effect of rate heterogeneity is imposed on the model a priori, which facilitates the learning of the biologically more interesting effect of regional rate heterogeneity a posteriori. I have carried out simulations on synthetic DNA sequence alignments, which have borne out my conjecture. The existing model, which does not explicitly include the within-codon rate variation, has to model both effects with the same modelling mechanism. As expected, it was found to fail to disentangle these two effects. On the contrary, I have found that my new model clearly separates within-codon rate variation from regional rate heterogeneity, resulting in more accurate predictions
    • …
    corecore