7,109 research outputs found

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Study of fault-tolerant software technology

    Get PDF
    Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance

    Asynchronous Teams and Tasks in a Message Passing Environment

    Get PDF
    As the discipline of scientific computing grows, so too does the "skills gap" between the increasingly complex scientific applications and the efficient algorithms required. Increasing demand for computational power on the march towards exascale requires innovative approaches. Closing the skills gap avoids the many pitfalls that lead to poor utilisation of resources and wasted investment. This thesis tackles two challenges: asynchronous algorithms for parallel computing and fault tolerance. First I present a novel asynchronous task invocation methodology for Discontinuous Galerkin codes called enclave tasking. The approach modifies the parallel ordering of tasks that allows for efficient scaling on dynamic meshes up to 756 cores. It ensures high levels of concurrency and intermixes tasks of different computational properties. Critical tasks along domain boundaries are prioritised for an overlap of computation and communication. The second contribution is the teaMPI library, forming teams of MPI processes exchanging consistency data through an asynchronous "heartbeat". In contrast to previous approaches, teaMPI operates fully asynchronously with reduced overhead. It is also capable of detecting individually slow or failing ranks and inconsistent data among replicas. Finally I provide an outlook into how asynchronous teams using enclave tasking can be combined into an advanced team-based diffusive load balancing scheme. Both concepts are integrated into and contribute towards the ExaHyPE project, a next generation code that solves hyperbolic equation systems on dynamically adaptive cartesian grids
    • …
    corecore