1,068 research outputs found

    Planar Induced Subgraphs of Sparse Graphs

    Full text link
    We show that every graph has an induced pseudoforest of at least n−m/4.5n-m/4.5 vertices, an induced partial 2-tree of at least n−m/5n-m/5 vertices, and an induced planar subgraph of at least n−m/5.2174n-m/5.2174 vertices. These results are constructive, implying linear-time algorithms to find the respective induced subgraphs. We also show that the size of the largest KhK_h-minor-free graph in a given graph can sometimes be at most n−m/6+o(m)n-m/6+o(m).Comment: Accepted by Graph Drawing 2014. To appear in Journal of Graph Algorithms and Application

    Size of the Largest Induced Forest in Subcubic Graphs of Girth at least Four and Five

    Full text link
    In this paper, we address the maximum number of vertices of induced forests in subcubic graphs with girth at least four or five. We provide a unified approach to prove that every 2-connected subcubic graph on nn vertices and mm edges with girth at least four or five, respectively, has an induced forest on at least n−29mn-\frac{2}{9}m or n−15mn-\frac{1}{5}m vertices, respectively, except for finitely many exceptional graphs. Our results improve a result of Liu and Zhao and are tight in the sense that the bounds are attained by infinitely many 2-connected graphs. Equivalently, we prove that such graphs admit feedback vertex sets with size at most 29m\frac{2}{9}m or 15m\frac{1}{5}m, respectively. Those exceptional graphs will be explicitly constructed, and our result can be easily modified to drop the 2-connectivity requirement

    Short proofs of some extremal results

    Get PDF
    We prove several results from different areas of extremal combinatorics, giving complete or partial solutions to a number of open problems. These results, coming from areas such as extremal graph theory, Ramsey theory and additive combinatorics, have been collected together because in each case the relevant proofs are quite short.Comment: 19 page

    Small grid embeddings of 3-polytopes

    Full text link
    We introduce an algorithm that embeds a given 3-connected planar graph as a convex 3-polytope with integer coordinates. The size of the coordinates is bounded by O(27.55n)=O(188n)O(2^{7.55n})=O(188^{n}). If the graph contains a triangle we can bound the integer coordinates by O(24.82n)O(2^{4.82n}). If the graph contains a quadrilateral we can bound the integer coordinates by O(25.46n)O(2^{5.46n}). The crucial part of the algorithm is to find a convex plane embedding whose edges can be weighted such that the sum of the weighted edges, seen as vectors, cancel at every point. It is well known that this can be guaranteed for the interior vertices by applying a technique of Tutte. We show how to extend Tutte's ideas to construct a plane embedding where the weighted vector sums cancel also on the vertices of the boundary face
    • …
    corecore