337,580 research outputs found

    Bringing Order to Special Cases of Klee's Measure Problem

    Full text link
    Klee's Measure Problem (KMP) asks for the volume of the union of n axis-aligned boxes in d-space. Omitting logarithmic factors, the best algorithm has runtime O*(n^{d/2}) [Overmars,Yap'91]. There are faster algorithms known for several special cases: Cube-KMP (where all boxes are cubes), Unitcube-KMP (where all boxes are cubes of equal side length), Hypervolume (where all boxes share a vertex), and k-Grounded (where the projection onto the first k dimensions is a Hypervolume instance). In this paper we bring some order to these special cases by providing reductions among them. In addition to the trivial inclusions, we establish Hypervolume as the easiest of these special cases, and show that the runtimes of Unitcube-KMP and Cube-KMP are polynomially related. More importantly, we show that any algorithm for one of the special cases with runtime T(n,d) implies an algorithm for the general case with runtime T(n,2d), yielding the first non-trivial relation between KMP and its special cases. This allows to transfer W[1]-hardness of KMP to all special cases, proving that no n^{o(d)} algorithm exists for any of the special cases under reasonable complexity theoretic assumptions. Furthermore, assuming that there is no improved algorithm for the general case of KMP (no algorithm with runtime O(n^{d/2 - eps})) this reduction shows that there is no algorithm with runtime O(n^{floor(d/2)/2 - eps}) for any of the special cases. Under the same assumption we show a tight lower bound for a recent algorithm for 2-Grounded [Yildiz,Suri'12].Comment: 17 page

    On distance measures for well-distributed sets

    Full text link
    In this paper we investigate the Erd\"os/Falconer distance conjecture for a natural class of sets statistically, though not necessarily arithmetically, similar to a lattice. We prove a good upper bound for spherical means that have been classically used to study this problem. We conjecture that a majorant for the spherical means suffices to prove the distance conjecture(s) in this setting. For a class of non-Euclidean distances, we show that this generally cannot be achieved, at least in dimension two, by considering integer point distributions on convex curves and surfaces. In higher dimensions, we link this problem to the question about the existence of smooth well-curved hypersurfaces that support many integer points

    An improved bound on the number of point-surface incidences in three dimensions

    Get PDF
    We show that mm points and nn smooth algebraic surfaces of bounded degree in R3\mathbb{R}^3 satisfying suitable nondegeneracy conditions can have at most O(m2k3k−1n3k−33k−1+m+n)O(m^{\frac{2k}{3k-1}}n^{\frac{3k-3}{3k-1}}+m+n) incidences, provided that any collection of kk points have at most O(1) surfaces passing through all of them, for some k≥3k\geq 3. In the case where the surfaces are spheres and no three spheres meet in a common circle, this implies there are O((mn)3/4+m+n)O((mn)^{3/4} + m +n) point-sphere incidences. This is a slight improvement over the previous bound of O((mn)3/4β(m,n)+m+n)O((mn)^{3/4} \beta(m,n)+ m +n) for β(m,n)\beta(m,n) an (explicit) very slowly growing function. We obtain this bound by using the discrete polynomial ham sandwich theorem to cut R3\mathbb{R}^3 into open cells adapted to the set of points, and within each cell of the decomposition we apply a Turan-type theorem to obtain crude control on the number of point-surface incidences. We then perform a second polynomial ham sandwich decomposition on the irreducible components of the variety defined by the first decomposition. As an application, we obtain a new bound on the maximum number of unit distances amongst mm points in R3\mathbb{R}^3.Comment: 17 pages, revised based on referee comment

    Computational Geometry Column 42

    Get PDF
    A compendium of thirty previously published open problems in computational geometry is presented.Comment: 7 pages; 72 reference

    Far-Field Compression for Fast Kernel Summation Methods in High Dimensions

    Full text link
    We consider fast kernel summations in high dimensions: given a large set of points in dd dimensions (with d≫3d \gg 3) and a pair-potential function (the {\em kernel} function), we compute a weighted sum of all pairwise kernel interactions for each point in the set. Direct summation is equivalent to a (dense) matrix-vector multiplication and scales quadratically with the number of points. Fast kernel summation algorithms reduce this cost to log-linear or linear complexity. Treecodes and Fast Multipole Methods (FMMs) deliver tremendous speedups by constructing approximate representations of interactions of points that are far from each other. In algebraic terms, these representations correspond to low-rank approximations of blocks of the overall interaction matrix. Existing approaches require an excessive number of kernel evaluations with increasing dd and number of points in the dataset. To address this issue, we use a randomized algebraic approach in which we first sample the rows of a block and then construct its approximate, low-rank interpolative decomposition. We examine the feasibility of this approach theoretically and experimentally. We provide a new theoretical result showing a tighter bound on the reconstruction error from uniformly sampling rows than the existing state-of-the-art. We demonstrate that our sampling approach is competitive with existing (but prohibitively expensive) methods from the literature. We also construct kernel matrices for the Laplacian, Gaussian, and polynomial kernels -- all commonly used in physics and data analysis. We explore the numerical properties of blocks of these matrices, and show that they are amenable to our approach. Depending on the data set, our randomized algorithm can successfully compute low rank approximations in high dimensions. We report results for data sets with ambient dimensions from four to 1,000.Comment: 43 pages, 21 figure
    • …
    corecore