124 research outputs found

    On Interference Cancellation and Iterative Techniques

    Get PDF
    Recent research activities in the area of mobile radio communications have moved to third generation (3G) cellular systems to achieve higher quality with variable transmission rate of multimedia information. In this paper, an overview is presented of various interference cancellation and iterative detection techniques that are believed to be suitable for 3G wireless communications systems. Key concepts are space-time processing and space-division multiple access (or SDMA) techniques. SDMA techniques are possible with software antennas. Furthermore, to reduce receiver implementation complexity, iterative detection techniques are considered. A particularly attractive method uses tentative hard decisions, made on the received positions with the highest reliability, according to some criterion, and can potentially yield an important reduction in the computational requirements of an iterative receiver, with minimum penalty in error performance. A study of the tradeoffs between complexity and performance loss of iterative multiuser detection techniques is a good research topic

    A Linear Multi-User Detector for STBC MC-CDMA Systems based on the Adaptive Implementation of the Minimum-Conditional Bit-Error-Rate Criterion and on Genetic Algorithm-assisted MMSE Channel Estimation

    Get PDF
    The implementation of efficient baseband receivers characterized by affordable computational load is a crucial point in the development of transmission systems exploiting diversity in different domains. In this paper, we are proposing a linear multi-user detector for MIMO MC-CDMA systems with Alamouti’s Space-Time Block Coding, inspired by the concept of Minimum Conditional Bit-Error-Rate (MCBER) and relying on Genetic-Algorithm (GA)-assisted MMSE channel estimation. The MCBER combiner has been implemented in adaptive way by using Least-Mean-Square (LMS) optimization. Firstly, we shall analyze the proposed adaptive MCBER MUD receiver with ideal knowledge of Channel Status Information (CSI). Afterwards, we shall consider the complete receiver structure, encompassing also the non-ideal GA-assisted channel estimation. Simulation results evidenced that the proposed MCBER receiver always outperforms state-of-the-art receiver schemes based on EGC and MMSE criterion exploiting the same degree of channel knowledge (i.e. ideal or estimated CSI)

    Lattice-structure based adaptive MMSE detectors for DS-CDMA systems.

    Get PDF
    Thesis (M.Sc.Eng.)-University of Natal, Durban, 2001.There has been significant interest in the research community on detectors for DS-CDMA systems. The conventional detector, which detects users ' data bits, by using a filter matched to the users' spreading codes, has two major drawbacks. These drawbacks are (1) its capacity is limited by multiple access interference (MAl) and (2) it suffers from the near-far problem. The remedy to these problems is to use a multiuser detector, which exploits knowledge of users ' transmission and channel parameters to mitigate MAl. Such detectors are called multi user detectors (MUD). A number of these detectors have been proposed in the literature. The first such detector is the optimal detector proposed by Verdu. Following Verdu's work a number of suboptimal detector were proposed. These detectors offer better computational complexity at the expense of the bit error rate performance. Examples of these detectors are the decorrelating detector, the minimum mean squared error detector (MMSE), the successive interference cancellation and parallel interference cancellation. In this thesis, we consider the adaptive DS-CDMA MMSE detector, where lattice-based filter algorithms are employed to suppress MAl. Most of the work in the literature has considered the implementation of this detector using the Least Mean Square (LMS) algorithm. The disadvantage of using the LMS algorithm to implement the MMSE detector is that the LMS algorithm converges very slowly. The main aims of this thesis are as follows. A review of the literature on MUD is presented. A lattice based MUD is then proposed and its performance evaluated using both simulation and analytical methods. The results obtained are compared with those of the LMSMMSE detector. From the results obtained the adaptive Lattice-MMSE detector is shown to offer good performance tradeoff between convergence results and BER results

    Code-timing synchronization in DS-CDMA systems using space-time diversity

    Get PDF
    The synchronization of a desired user transmitting a known training sequence in a direct-sequence (DS) asynchronous code-division multiple-access (CDMA) sys-tem is addressed. It is assumed that the receiver consists of an arbitrary antenna array and works in a near-far, frequency-nonselective, slowly fading channel. The estimator that we propose is derived by applying the maximum likelihood (ML) principle to a signal model in which the contribution of all the interfering compo-nents (e.g., multiple-access interference, external interference and noise) is modeled as a Gaussian term with an unknown and arbitrary space-time correlation matrix. The main contribution of this paper is the fact that the estimator makes eÆcient use of the structure of the signals in both the space and time domains. Its perfor-mance is compared with the Cramer-Rao Bound, and with the performance of other methods proposed recently that also employ an antenna array but only exploit the structure of the signals in one of the two domains, while using the other simply as a means of path diversity. It is shown that the use of the temporal and spatial structures is necessary to achieve synchronization in heavily loaded systems or in the presence of directional external interference.Peer ReviewedPostprint (published version
    • …
    corecore