132 research outputs found

    Effects of atmospheric, topographic, and BRDF correction on imaging spectroscopy-derived data products

    Full text link
    Surface reflectance is an important data product in imaging spectroscopy for obtaining surface information. The complex retrieval of surface reflectance, however, critically relies on accurate knowledge of atmospheric absorption and scattering, and the compensation of these effects. Furthermore, illumination and observation geometry in combination with surface reflectance anisotropy determine dynamics in retrieved surface reflectance not related to surface absorption properties. To the best of authorsโ€™ knowledge, no comprehensive assessment of the impact of atmospheric, topographic, and anisotropy effects on derived surface information is available so far.This study systematically evaluates the impact of these effects on reflectance, albedo, and vegetation products. Using three well-established processing schemes (ATCOR F., ATCOR R., and BREFCOR), high-resolution APEX imaging spectroscopy data, covering a large gradient of illumination and observation angles, are brought to several processing states, varyingly affected by mentioned effects. Pixel-wise differences of surface reflectance, albedo, and spectral indices of neighboring flight lines are quantitatively analyzed in their respective overlapping area. We found that compensation of atmospheric effects reveals actual anisotropy-related dynamics in surface reflectance and derived albedo, related to an increase in pixel-wise relative reflectance and albedo differences of more than 40%. Subsequent anisotropy compensation allows us to successfully reduce apparent relative reflectance and albedo differences by up to 20%. In contrast, spectral indices are less affected by atmospheric and anisotropy effects, showing relative differences of 3% to 10% in overlapping regions of flight lines.We recommend to base decisions on the use of appropriate processing schemes on individual use cases considering envisioned data products

    ๋“œ๋ก ์„ ํ™œ์šฉํ•œ ์œ„์„ฑ ์ง€ํ‘œ๋ฐ˜์‚ฌ๋„ ์‚ฐ์ถœ๋ฌผ ๊ณต๊ฐ„ ํŒจํ„ด ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ์ƒํƒœ์กฐ๊ฒฝยท์ง€์—ญ์‹œ์Šคํ…œ๊ณตํ•™๋ถ€(์ƒํƒœ์กฐ๊ฒฝํ•™), 2021.8. ์กฐ๋Œ€์†”.High-resolution satellites are assigned to monitor land surface in detail. The reliable surface reflectance (SR) is the fundamental in terrestrial ecosystem modeling so the temporal and spatial validation is essential. Usually based on multiple ground control points (GCPs), field spectroscopy guarantees the temporal continuity. Due to limited sampling, however, it hardly illustrates the spatial pattern. As a map, the pixelwise spatial variability of SR products is not well-documented. In this study, we introduced drone-based hyperspectral image (HSI) as a reference and compared the map with Sentinel 2 and Landsat 8 SR products on a heterogeneous rice paddy landscape. First, HSI was validated by field spectroscopy and swath overlapping, which assured qualitative radiometric accuracy within the viewing geometry. Second, HSI was matched to the satellite SRs. It involves spectral and spatial aggregation, co-registration and nadir bidirectional reflectance distribution function (BRDF)-adjusted reflectance (NBAR) conversion. Then, we 1) quantified the spatial variability of the satellite SRs and the vegetation indices (VIs) including NDVI and NIRv by APU matrix, 2) qualified them pixelwise by theoretical error budget and 3) examined the improvement by BRDF normalization. Sentinel 2 SR exhibits overall good agreement with drone HSI while the two NIRs are biased up to 10%. Despite the bias in NIR, the NDVI shows a good match on vegetated areas and the NIRv only displays the discrepancy on built-in areas. Landsat 8 SR was biased over the VIS bands (-9 ~ -7.6%). BRDF normalization just contributed to a minor improvement. Our results demonstrate the potential of drone HSI to replace in-situ observation and evaluate SR or atmospheric correction algorithms over the flat terrain. Future researches should replicate the results over the complex terrain and canopy structure (i.e. forest).์›๊ฒฉํƒ์‚ฌ์—์„œ ์ง€ํ‘œ ๋ฐ˜์‚ฌ๋„(SR)๋Š” ์ง€ํ‘œ์ •๋ณด๋ฅผ ๋น„ํŒŒ๊ดด์ ์ด๊ณ  ์ฆ‰๊ฐ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ์ „๋‹ฌํ•ด์ฃผ๋Š” ๋งค๊ฐœ์ฒด ์—ญํ• ์„ ํ•œ๋‹ค. ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” SR์€ ์œก์ƒ ์ƒํƒœ๊ณ„ ๋ชจ๋ธ๋ง์˜ ๊ธฐ๋ณธ์ด๊ณ , ์ด์— ๋”ฐ๋ผ SR์˜ ์‹œ๊ณต๊ฐ„์  ๊ฒ€์ฆ์ด ์š”๊ตฌ๋œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ SR์€ ์—ฌ๋Ÿฌ ์ง€์ƒ ๊ธฐ์ค€์ (GCP)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ํ˜„์žฅ ๋ถ„๊ด‘๋ฒ•์„ ํ†ตํ•ด์„œ ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ์ด ๋ณด์žฅ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฅ ๋ถ„๊ด‘๋ฒ•์€ ์ œํ•œ์ ์ธ ์ƒ˜ํ”Œ๋ง์œผ๋กœ ๊ณต๊ฐ„ ํŒจํ„ด์„ ๊ฑฐ์˜ ๋ณด์—ฌ์ฃผ์ง€ ์•Š์•„, ์œ„์„ฑ SR์˜ ํ”ฝ์…€ ๋ณ„ ๊ณต๊ฐ„ ๋ณ€๋™์„ฑ์€ ์ž˜ ๋ถ„์„๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋“œ๋ก  ๊ธฐ๋ฐ˜์˜ ์ดˆ๋ถ„๊ด‘ ์˜์ƒ(HSI)์„ ์ฐธ๊ณ ์ž๋ฃŒ๋กœ ๋„์ž…ํ•˜์—ฌ, ์ด๋ฅผ ์ด์งˆ์ ์ธ ๋…ผ ๊ฒฝ๊ด€์—์„œ Sentinel 2 ๋ฐ Landsat 8 SR๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ์šฐ์„ , ๋“œ๋ก  HSI๋Š” ํ˜„์žฅ ๋ถ„๊ด‘๋ฒ• ๋ฐ ๊ฒฝ๋กœ ์ค‘์ฒฉ์„ ํ†ตํ•ด์„œ ๊ด€์ธก๊ฐ๋„ ๋ฒ”์œ„ ๋‚ด์—์„œ ์ •์„ฑ์ ์ธ ๋ฐฉ์‚ฌ ์ธก์ •์„ ๋ณด์žฅํ•œ๋‹ค๊ณ  ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์ดํ›„, ๋“œ๋ก  HSI๋Š” ์œ„์„ฑ SR์˜ ๋ถ„๊ด‘๋ฐ˜์‘ํŠน์„ฑ, ๊ณต๊ฐ„ํ•ด์ƒ๋„ ๋ฐ ์ขŒํ‘œ๊ณ„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋งž์ถฐ์กŒ๊ณ , ๊ด€์ธก ๊ธฐํ•˜๋ฅผ ํ†ต์ผํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋“œ๋ก  HIS์™€ ์œ„์„ฑ SR์€ ๊ฐ๊ฐ ์–‘๋ฐฉํ–ฅ๋ฐ˜์‚ฌ์œจ๋ถ„ํฌํ•จ์ˆ˜ (BRDF) ์ •๊ทœํ™” ๋ฐ˜์‚ฌ๋„ (NBAR)๋กœ ๋ณ€ํ™˜๋˜์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, 1) APU ํ–‰๋ ฌ์œผ๋กœ ์œ„์„ฑ SR๊ณผ NDVI, NIRv๋ฅผ ํฌํ•จํ•˜๋Š” ์‹์ƒ์ง€์ˆ˜(VI)์˜ ๊ณต๊ฐ„๋ณ€๋™์„ฑ์„ ์ •๋Ÿ‰ํ™” ํ–ˆ๊ณ , 2) ๋Œ€๊ธฐ๋ณด์ •์˜ ์ด๋ก ์  ์˜ค์ฐจ๋ฅผ ๊ธฐ์ค€์œผ๋กœ SR๊ณผ VI๋ฅผ ํ”ฝ์…€๋ณ„๋กœ ํ‰๊ฐ€ํ–ˆ๊ณ , 3) BRDF ์ •๊ทœํ™”๋ฅผ ํ†ตํ•œ ๊ฐœ์„  ์‚ฌํ•ญ์„ ๊ฒ€ํ† ํ–ˆ๋‹ค. Sentinel 2 SR์€ ๋“œ๋ก  HSI์™€ ์ „๋ฐ˜์ ์œผ๋กœ ์ข‹์€ ์ผ์น˜๋ฅผ ๋ณด์ด๋‚˜, ๋‘ NIR ์ฑ„๋„์€ ์ตœ๋Œ€ 10% ํŽธํ–ฅ๋˜์—ˆ๋‹ค. NIR์˜ ํŽธํ–ฅ์€ ์‹์ƒ์ง€์ˆ˜์—์„œ ํ† ์ง€ ํ”ผ๋ณต์— ๋”ฐ๋ผ ๋‹ค๋ฅธ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋‹ค. NDVI๋Š” ์‹์ƒ์—์„œ๋Š” ๋‚ฎ์€ ํŽธํ–ฅ์„ ๋ณด์—ฌ์คฌ๊ณ , NIRv๋Š” ๋„์‹œ์‹œ์„ค๋ฌผ ์˜์—ญ์—์„œ๋งŒ ๋†’์€ ํŽธํ–ฅ์„ ๋ณด์˜€๋‹ค. Landsat 8 SR์€ VIS ์ฑ„๋„์— ๋Œ€ํ•ด ํŽธํ–ฅ๋˜์—ˆ๋‹ค (-9 ~ -7.6%). BRDF ์ •๊ทœํ™”๋Š” ์œ„์„ฑ SR์˜ ํ’ˆ์งˆ์„ ๊ฐœ์„ ํ–ˆ์ง€๋งŒ, ๊ทธ ์˜ํ–ฅ์€ ๋ถ€์ˆ˜์ ์ด์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ‰ํƒ„ํ•œ ์ง€ํ˜•์—์„œ ๋“œ๋ก  HSI๊ฐ€ ํ˜„์žฅ ๊ด€์ธก์„ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๊ณ , ๋”ฐ๋ผ์„œ ์œ„์„ฑ SR์ด๋‚˜ ๋Œ€๊ธฐ๋ณด์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ‰๊ฐ€ํ•˜๋Š”๋ฐ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์˜€๋‹ค. ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ์‚ฐ๋ฆผ์œผ๋กœ ๋Œ€์ƒ์ง€๋ฅผ ํ™•๋Œ€ํ•˜์—ฌ, ์ง€ํ˜•๊ณผ ์บ๋…ธํ”ผ ๊ตฌ์กฐ๊ฐ€ ๋“œ๋ก  HSI ๋ฐ ์œ„์„ฑ SR์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค.Chapter 1. Introduction 1 1.1 Background 1 Chapter 2. Method 3 2.1 Study Site 3 2.2 Drone campaign 4 2.3 Data processing 4 2.3.1 Sensor calibration 5 2.3.2 Bidirectional reflectance factor (BRF) calculation 7 2.3.3 BRDF correction 7 2.3.4 Orthorectification 8 2.3.5 Spatial Aggregation 9 2.3.6 Co-registration 10 2.4 Satellite dataset 10 2.4.2 Landsat 8 12 Chapter 3. Result and Discussion 12 3.1 Drone BRF map quality assessment 12 3.1.1 Radiometric accuracy 12 3.1.2 BRDF effect 15 3.2 Spatial variability in satellite surface reflectance product 16 3.2.1 Sentinel 2B (10m) 17 3.2.2 Sentinel 2B (20m) 22 3.2.3 Landsat 8 26 Chapter 4. Conclusion 28 Supplemental Materials 30 Bibliography 34 Abstract in Korean 43์„

    Theoretical Evaluation of Anisotropic Reflectance Correction Approaches for Addressing Multi-Scale Topographic Effects on the Radiation-Transfer Cascade in Mountain Environments

    Get PDF
    Research involving anisotropic-reflectance correction (ARC) of multispectral imagery to account for topographic effects has been ongoing for approximately 40 years. A large body of research has focused on evaluating empirical ARC methods, resulting in inconsistent results. Consequently, our research objective was to evaluate commonly used ARC methods using first-order radiation-transfer modeling to simulate ASTER multispectral imagery over Nanga Parbat, Himalaya. Specifically, we accounted for orbital dynamics, atmospheric absorption and scattering, direct- and diffuse-skylight irradiance, land cover structure, and surface biophysical variations to evaluate their effectiveness in reducing multi-scale topographic effects. Our results clearly reveal that the empirical methods we evaluated could not reasonably account for multi-scale topographic effects at Nanga Parbat. The magnitude of reflectance and the correlation structure of biophysical properties were not preserved in the topographically-corrected multispectral imagery. The CCOR and SCS+C methods were able to remove topographic effects, given the Lambertian assumption, although atmospheric correction was required, and we did not account for other primary and secondary topographic effects that are thought to significantly influence spectral variation in imagery acquired over mountains. Evaluation of structural-similarity index images revealed spatially variable results that are wavelength dependent. Collectively, our simulation and evaluation procedures strongly suggest that empirical ARC methods have significant limitations for addressing anisotropic reflectance caused by multi-scale topographic effects. Results indicate that atmospheric correction is essential, and most methods failed to adequately produce the appropriate magnitude and spatial variation of surface reflectance in corrected imagery. Results were also wavelength dependent, as topographic effects influence radiation-transfer components differently in different regions of the electromagnetic spectrum. Our results explain inconsistencies described in the literature, and indicate that numerical modeling efforts are required to better account for multi-scale topographic effects in various radiation-transfer components.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm

    Get PDF
    This paper describes the theory and the algorithm to be used in producing a global bidirectional reflectance distribution function (BRDF) and albedo product from data to be acquired by the moderate resolution imaging spectroradiometer (MODIS) and the multiangle imaging spectroradiometer (MISR), both to be launched in 1998 on the AM-I satellite platform as part of NASA's Earth Observing System (EOS). The product will be derived using the kernel-driven semiempirical Ambrals BRDF model, utilizing five variants of kernel functions characterizing isotropic, volume and surface scattering. The BRDF and the albedo of each pixel of the land surface will be modeled at a spatial resolution of I km and once every 16 days in seven spectral bands spanning the visible and the near infrared. The BRDF parameters retrieved and recorded in the MODIS BRDF/albedo product will be intrinsic surface properties decoupled from the prevailing atmospheric state and hence suited for a wide range of applications requiring characterization of the directional anisotropy of Earth surface reflectance. A set of quality control flags accompanies the product. An initial validation of the Ambrals model is demonstrated using a variety of field-measured data sets for several different land cover types

    Anisotropic-Reflectance Correction of Multispectral Satellite Imagery in Complex Mountain Terrain

    Get PDF
    The utilization of satellite imagery acquired over rugged terrain is problematic because of anisotropic reflectance. A variety of environmental factors, such as the atmosphere and the topography, cause significant variation in the irradiant and radiant flux. Consequently, satellite imagery must be radiometric ally corrected to account for these variations which influence the at-satellite spectral response. In mountain terrain, the topographic effect is very pronounced, and satellite imagery must be normalized utilizing various techniques. The purpose of this research was to evaluate various implementations of the Minnaert correction technique which were designed to account for the influence of topography and land cover on sensor response. Specifically, a local and land cover stratification procedure was developed and tested to compute multiple Minnaert constants. SPOT HRV satellite imagery of the Nanga Parbat Himalaya was used because the topography is extreme, and the study area represents an excellent location for testing anisotropic-reflectance correction procedures. The SPOT-3 NIR image was used in the analysis as the atmospheric influence was minimal. A digital elevation model (DEM) was generated using SPOT-3 panchromatic stereopairs. The DEM was used to produce estimates of slope and slope aspect for accounting for variations in the local direct irradiant flux. Four subimages were selected to evaluate the spectral variance for two homogeneous areas and two heterogeneous areas. Effective anisotropic-reflectance correction should result in a decrease in spectral variation over homogeneous land cover and increased spectral variation among heterogeneous land cover areas. Descriptive statistics and semivariogram analysis was used for evaluation of the original and normalized images. Results indicated that the Cosine-correction method produced high radiance values throughout the image regardless of land cover. This over-correction was found wherever there were steep slopes, and is the result of not accounting for the correct magnitude of the surface irradiance. The Minnaert-correction procedure, using a global Minnaert constant, appeared to produce better results, however, global-regression analysis revealed results that did not accurately characterize the degree of anistropy for various land cover classes. M innaert correction based upon land-cover stratification produced statistically valid results, such that both topography and land cover effects on the radiant flux were generally accounted for. The window-based approach produced images that appeared to reduce the topographic effect, although overcorrection still occurred, and statistical results were invalid for small window sizes. These results indicated that the Minnaert-Correction procedure has the potential to be used to reduce the topographic effect in rugged terrain, if scale-dependent variation in the topography and land-cover characteristics can be locally evaluated to compute Minnaert constants. Furthermore, the diffuse-irradiant and adjacent-terrain irradiant flux need to be considered as overcorrection is problematic in complex terrain. More research on dynamic spatial-partitioning of the topography and spectral variation is therefore warrented

    Detecting soil erosion in semi-arid Mediterranean environments using simulated EnMAP data

    Get PDF
    Soil is an essential nature resource. Management of this resource is vital for sustainability and the continued functioning of earths atmospheric, hydrospheric and lithospheric functioning. The assessment and continued monitoring of surface soil state provides the information required to effectively manage this resource. This research used a simulated Environmental Mapping and Analysis Program (EnMAP) hyperspectral image cube of an agricultural region in semi- arid Mediterranean Spain to classify soil erosion states. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to derive within pixel fractions of eroded and accumulated soils. A Classification of the soil erosion states using the scene fraction outputs and digital terrain information. The information products generated in this research provided an optimistic outlook for the applicability of the future EnMAP sensor for soil erosion investigations in semi-arid Mediterranean environments. Additionally, this research verifies that the launch of the EnMAP satellite sensor in 2018 will provide the opportunity to further improve the monitoring of earth finite soil resources.NSERC create AMETHYST , Alberta Terrestrial Imaging Centre

    Procedures for the analysis and use of multiple view angle image data

    Get PDF
    It is recognised that the majority of vegetative cover types have anisotropic reflectance characteristics that are largely a function of their canopy geometry. Several studies have made attempts at formulating methods for the use of data remotely sensed from off-nadir directions. The best of these methods attempt to utilise the "extra" information implicitly contained in off-nadir image datasets. In this study, an attempt is made to extract information concerning agro-physical parameters of a number of vegetative cover types using imagery acquired by an airborne sensor, the Daedalus Airborne Thematic Mapper (ATM). It is also recognised in the literature that the nature of spatial variance in images is related to the size and distribution of the objects in the scene and the sampling characteristics of the sensor. In previous work this relationship has been explored by examining scenes using images of varying spatial resolutions, using a number of measurements of spatial variance. The underlying trend of these measurements is then used to interpret the nature of the objects in the scene. No previous work exists which attempts to utilise the change in variance of images acquired at different off-nadir view angles. In this study, the understanding of this relationship is developed by examining the change in variance of a number of vegetative cover types from multiple view angle image datasets. The geometry of the ATM sensor is derived to allow an understanding of the sampling characteristics of the instrument. Two important geometric factors are established: first, the area of the ground resolution element increases with view angle, which effectively reduces spatial resolution at off-nadir angles; and second, overlap between adjacent ground resolution elements increases with view angle, increasing the spatial auto-correlation between these samples. The effects of illumination, atmosphere and topography can all influence variance in an image. A parametric procedure for normalising multiple view angle (and therefore multitemporal) datasets for these factors is developed, based upon the production of reflectance images using a sky radiance model of the spectral and spatial distributions of irradiance, ground measurements of irradiance, and a digital terrain model of the study site. Finally, it is shown that image variance is likely to decrease at off-nadir view angles, the magnitude of this decrease being related to the sensor geometry and (more importantly) the geometry of the canopy. By a simple statistical analytical procedure it is possible to construct broad classes within which the nature of the canopy can be classified

    How forwardโ€scattering snow and terrain change the Alpine radiation balance with application to solar panels

    Get PDF
    Rough terrain in mid- and high latitudes is often covered with highly reflective snow, giving rise to a very complex transfer of incident sunlight. In order to simplify the radiative transfer in weather and climate models, snow is generally treated as an isotropically reflecting material. We develop a new model of radiative transfer over mountainous terrain, which considers for the first time the forward scattering properties of snow. Combining ground-measured meteorological data and high resolution digital elevation models, we show that the forward scattering peak of snow leads to a strong local redistribution of incident terrain reflected radiation. In particular, the effect of multiple terrain reflections is enhanced. While local effects are large, area-wide albedo is only marginally decreased. In addition, we show that solar panels on snowy ground can clearly benefit from forward scattering, helping to maximize winter electricity production
    • โ€ฆ
    corecore