698 research outputs found

    The Traveling Salesman Problem Under Squared Euclidean Distances

    Get PDF
    Let PP be a set of points in Rd\mathbb{R}^d, and let α≥1\alpha \ge 1 be a real number. We define the distance between two points p,q∈Pp,q\in P as ∣pq∣α|pq|^{\alpha}, where ∣pq∣|pq| denotes the standard Euclidean distance between pp and qq. We denote the traveling salesman problem under this distance function by TSP(d,αd,\alpha). We design a 5-approximation algorithm for TSP(2,2) and generalize this result to obtain an approximation factor of 3α−1+6α/33^{\alpha-1}+\sqrt{6}^{\alpha}/3 for d=2d=2 and all α≥2\alpha\ge2. We also study the variant Rev-TSP of the problem where the traveling salesman is allowed to revisit points. We present a polynomial-time approximation scheme for Rev-TSP(2,α)(2,\alpha) with α≥2\alpha\ge2, and we show that Rev-TSP(d,α)(d, \alpha) is APX-hard if d≥3d\ge3 and α>1\alpha>1. The APX-hardness proof carries over to TSP(d,α)(d, \alpha) for the same parameter ranges.Comment: 12 pages, 4 figures. (v2) Minor linguistic change

    Approximating ATSP by Relaxing Connectivity

    Full text link
    The standard LP relaxation of the asymmetric traveling salesman problem has been conjectured to have a constant integrality gap in the metric case. We prove this conjecture when restricted to shortest path metrics of node-weighted digraphs. Our arguments are constructive and give a constant factor approximation algorithm for these metrics. We remark that the considered case is more general than the directed analog of the special case of the symmetric traveling salesman problem for which there were recent improvements on Christofides' algorithm. The main idea of our approach is to first consider an easier problem obtained by significantly relaxing the general connectivity requirements into local connectivity conditions. For this relaxed problem, it is quite easy to give an algorithm with a guarantee of 3 on node-weighted shortest path metrics. More surprisingly, we then show that any algorithm (irrespective of the metric) for the relaxed problem can be turned into an algorithm for the asymmetric traveling salesman problem by only losing a small constant factor in the performance guarantee. This leaves open the intriguing task of designing a "good" algorithm for the relaxed problem on general metrics.Comment: 25 pages, 2 figures, fixed some typos in previous versio

    Asymmetric Traveling Salesman Path and Directed Latency Problems

    Full text link
    We study integrality gaps and approximability of two closely related problems on directed graphs. Given a set V of n nodes in an underlying asymmetric metric and two specified nodes s and t, both problems ask to find an s-t path visiting all other nodes. In the asymmetric traveling salesman path problem (ATSPP), the objective is to minimize the total cost of this path. In the directed latency problem, the objective is to minimize the sum of distances on this path from s to each node. Both of these problems are NP-hard. The best known approximation algorithms for ATSPP had ratio O(log n) until the very recent result that improves it to O(log n/ log log n). However, only a bound of O(sqrt(n)) for the integrality gap of its linear programming relaxation has been known. For directed latency, the best previously known approximation algorithm has a guarantee of O(n^(1/2+eps)), for any constant eps > 0. We present a new algorithm for the ATSPP problem that has an approximation ratio of O(log n), but whose analysis also bounds the integrality gap of the standard LP relaxation of ATSPP by the same factor. This solves an open problem posed by Chekuri and Pal [2007]. We then pursue a deeper study of this linear program and its variations, which leads to an algorithm for the k-person ATSPP (where k s-t paths of minimum total length are sought) and an O(log n)-approximation for the directed latency problem

    Approximability of the Minimum Steiner Cycle Problem

    Get PDF
    In this paper, we consider variants of a new problem that we call minimum Steiner cycle problem (SCP). The problem is defined as follows. Given is a weighted complete graph and a set of terminal vertices. In the SCP problem, we are looking for a minimum-cost cycle that passes through every terminal exactly once and through every other vertex of the graph at most once. We show that, if P<>NP, there is no approximation algorithm for SCP on directed graphs with an approximation ratio polynomial in the input size. Moreover, this result holds even in the case when the number of terminals is 4. On the contrary, we show that SCP on undirected graphs with constant number of terminals and edge costs satisfying the beta-relaxed triangle inequality is approximable with the ratio beta^2+beta. When the number of terminals k is a part of the input, the problem is obviously a generalization of TSP. For the metric case, we present a 3/2- and a 2/3 log_2 k-approximation algorithm for undirected and directed graphs G=(V,E), respectively. For the case with the beta-relaxed triangle inequality, we present a (beta^2+beta)-approximation algorithm

    Approximation algorithms for the traveling salesman problem

    No full text
    We first prove that the minimum and maximum traveling salesman problems, their metric versions as well as some versions defined on parameterized triangle inequalities (called sharpened and relaxed metric traveling salesman) are all equi-approximable under an approximation measure, called differential-approximation ratio, that measures how the value of an approximate solution is placed in the interval between the worst- and the best-value solutions of an instance. We next show that the 2-OPT, one of the most-known traveling salesman algorithms, approximately solves all these problems within differential-approximation ratio bounded above by 1/2. We analyze the approximation behavior of 2-OPT when used to approximately solve traveling salesman problem in bipartite graphs and prove that it achieves differential-approximation ratio bounded above by 1/2 also in this case. We also prove that, it is NP-hard to differentially approximate metric traveling salesman within better than 649/650 and traveling salesman with distances 1 and 2 within better than 741/742. Finally, we study the standard approximation of the maximum sharpened and relaxed metric traveling salesman problems. These are versions of maximum metric traveling salesman defined on parameterized triangle inequalities and, to our knowledge, they have not been studied until now

    On the Approximability of TSP on Local Modifications of Optimally Solved Instances

    Get PDF
    Given an instance of TSP together with an optimal solution, we consider the scenario in which this instance is modified locally, where a local modification consists in the alteration of the weight of a single edge. More generally, for a problem U, let LM-U (local-modification-U) denote the same problem as U, but in LM-U, we are also given an optimal solution to an instance from which the input instance can be derived by a local modification. The question is how to exploit this additional knowledge, i.e., how to devise better algorithms for LM-U than for U. Note that this need not be possible in all cases: The general problem of LM-TSP is as hard as TSP itself, i.e., unless P=NP, there is no polynomial-time p(n)-approximation algorithm for LM-TSP for any polynomial p. Moreover, LM-TSP where inputs must satisfy the β-triangle inequality (LM-Δβ-TSP) remains NP-hard for all β>½. However, for LM-Δ-TSP (i.e., metric LM-TSP), we will present an efficient 1.4-approximation algorithm. In other words, the additional information enables us to do better than if we simply used Christofides' algorithm for the modified input. Similarly, for all 1<β<3.34899, we achieve a better approximation ratio for LM-Δ-TSP than for Δβ-TSP. For ½≤β<1, we show how to obtain an approximation ratio arbitrarily close to 1, for sufficiently large input graphs
    • …
    corecore