175,722 research outputs found

    Vertex Sparsifiers: New Results from Old Techniques

    Get PDF
    Given a capacitated graph G=(V,E)G = (V,E) and a set of terminals KVK \subseteq V, how should we produce a graph HH only on the terminals KK so that every (multicommodity) flow between the terminals in GG could be supported in HH with low congestion, and vice versa? (Such a graph HH is called a flow-sparsifier for GG.) What if we want HH to be a "simple" graph? What if we allow HH to be a convex combination of simple graphs? Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC 2010], we give efficient algorithms for constructing: (a) a flow-sparsifier HH that maintains congestion up to a factor of O(logk/loglogk)O(\log k/\log \log k), where k=Kk = |K|, (b) a convex combination of trees over the terminals KK that maintains congestion up to a factor of O(logk)O(\log k), and (c) for a planar graph GG, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in GG. Moreover, this result extends to minor-closed families of graphs. Our improved bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.Comment: An extended abstract appears in the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2010. Final version to appear in SIAM J. Computin

    Obstructions to Faster Diameter Computation: Asteroidal Sets

    Get PDF
    Full version of an IPEC'22 paperAn extremity is a vertex such that the removal of its closed neighbourhood does not increase the number of connected components. Let ExtαExt_{\alpha} be the class of all connected graphs whose quotient graph obtained from modular decomposition contains no more than α\alpha pairwise nonadjacent extremities. Our main contributions are as follows. First, we prove that the diameter of every mm-edge graph in ExtαExt_{\alpha} can be computed in deterministic O(α3m3/2){\cal O}(\alpha^3 m^{3/2}) time. We then improve the runtime to linear for all graphs with bounded clique-number. Furthermore, we can compute an additive +1+1-approximation of all vertex eccentricities in deterministic O(α2m){\cal O}(\alpha^2 m) time. This is in sharp contrast with general mm-edge graphs for which, under the Strong Exponential Time Hypothesis (SETH), one cannot compute the diameter in O(m2ϵ){\cal O}(m^{2-\epsilon}) time for any ϵ>0\epsilon > 0. As important special cases of our main result, we derive an O(m3/2){\cal O}(m^{3/2})-time algorithm for exact diameter computation within dominating pair graphs of diameter at least six, and an O(k3m3/2){\cal O}(k^3m^{3/2})-time algorithm for this problem on graphs of asteroidal number at most kk. We end up presenting an improved algorithm for chordal graphs of bounded asteroidal number, and a partial extension of our results to the larger class of all graphs with a dominating target of bounded cardinality. Our time upper bounds in the paper are shown to be essentially optimal under plausible complexity assumptions

    Algorithms to Approximate Column-Sparse Packing Problems

    Full text link
    Column-sparse packing problems arise in several contexts in both deterministic and stochastic discrete optimization. We present two unifying ideas, (non-uniform) attenuation and multiple-chance algorithms, to obtain improved approximation algorithms for some well-known families of such problems. As three main examples, we attain the integrality gap, up to lower-order terms, for known LP relaxations for k-column sparse packing integer programs (Bansal et al., Theory of Computing, 2012) and stochastic k-set packing (Bansal et al., Algorithmica, 2012), and go "half the remaining distance" to optimal for a major integrality-gap conjecture of Furedi, Kahn and Seymour on hypergraph matching (Combinatorica, 1993).Comment: Extended abstract appeared in SODA 2018. Full version in ACM Transactions of Algorithm

    Submodular Maximization Meets Streaming: Matchings, Matroids, and More

    Full text link
    We study the problem of finding a maximum matching in a graph given by an input stream listing its edges in some arbitrary order, where the quantity to be maximized is given by a monotone submodular function on subsets of edges. This problem, which we call maximum submodular-function matching (MSM), is a natural generalization of maximum weight matching (MWM), which is in turn a generalization of maximum cardinality matching (MCM). We give two incomparable algorithms for this problem with space usage falling in the semi-streaming range---they store only O(n)O(n) edges, using O(nlogn)O(n\log n) working memory---that achieve approximation ratios of 7.757.75 in a single pass and (3+ϵ)(3+\epsilon) in O(ϵ3)O(\epsilon^{-3}) passes respectively. The operations of these algorithms mimic those of Zelke's and McGregor's respective algorithms for MWM; the novelty lies in the analysis for the MSM setting. In fact we identify a general framework for MWM algorithms that allows this kind of adaptation to the broader setting of MSM. In the sequel, we give generalizations of these results where the maximization is over "independent sets" in a very general sense. This generalization captures hypermatchings in hypergraphs as well as independence in the intersection of multiple matroids.Comment: 18 page

    An Efficient Local Search for Partial Latin Square Extension Problem

    Full text link
    A partial Latin square (PLS) is a partial assignment of n symbols to an nxn grid such that, in each row and in each column, each symbol appears at most once. The partial Latin square extension problem is an NP-hard problem that asks for a largest extension of a given PLS. In this paper we propose an efficient local search for this problem. We focus on the local search such that the neighborhood is defined by (p,q)-swap, i.e., removing exactly p symbols and then assigning symbols to at most q empty cells. For p in {1,2,3}, our neighborhood search algorithm finds an improved solution or concludes that no such solution exists in O(n^{p+1}) time. We also propose a novel swap operation, Trellis-swap, which is a generalization of (1,q)-swap and (2,q)-swap. Our Trellis-neighborhood search algorithm takes O(n^{3.5}) time to do the same thing. Using these neighborhood search algorithms, we design a prototype iterated local search algorithm and show its effectiveness in comparison with state-of-the-art optimization solvers such as IBM ILOG CPLEX and LocalSolver.Comment: 17 pages, 2 figure

    Submodular Stochastic Probing on Matroids

    Get PDF
    In a stochastic probing problem we are given a universe EE, where each element eEe \in E is active independently with probability pep_e, and only a probe of e can tell us whether it is active or not. On this universe we execute a process that one by one probes elements --- if a probed element is active, then we have to include it in the solution, which we gradually construct. Throughout the process we need to obey inner constraints on the set of elements taken into the solution, and outer constraints on the set of all probed elements. This abstract model was presented by Gupta and Nagarajan (IPCO '13), and provides a unified view of a number of problems. Thus far, all the results falling under this general framework pertain mainly to the case in which we are maximizing a linear objective function of the successfully probed elements. In this paper we generalize the stochastic probing problem by considering a monotone submodular objective function. We give a (11/e)/(kin+kout+1)(1 - 1/e)/(k_{in} + k_{out}+1)-approximation algorithm for the case in which we are given kink_{in} matroids as inner constraints and koutk_{out} matroids as outer constraints. Additionally, we obtain an improved 1/(kin+kout)1/(k_{in} + k_{out})-approximation algorithm for linear objective functions
    corecore