26 research outputs found

    A tabu search algorithm for sparse placement of wavelength converting nodes in optical networks

    Get PDF
    Cataloged from PDF version of article.All-optical Wavelength Division Multiplexing networks, providing extremely large bandwidths, are among the most promising solutions for the increasing need for high-speed data transport. In all-optical networks, data is transmitted solely in the optical domain along lightpaths from source to destination without being converted into the electronic form, and each lightpath is restricted to use the same wavelength on all the links along its path. This restriction is known as the wavelength continuity constraint. Optical wavelength conversion can increase the performance and capacity of optical networks by removing this restriction and relaxing the wavelength continuity constraint. However, optical wavelength conversion is a difficult and expensive technology. In this study, we analyze the problem of placing limited number of wavelength converting nodes in a multi- fiber network with static traffic demands. Optimum placement of wavelength converting nodes is an NP-complete problem. We propose a tabu search based heuristic algorithm for this problem. The objective of the algorithm is to achieve the performance of full wavelength conversion in terms of minimizing the total number of fibers used in the network by placing minimum number of wavelength converting nodes. Numerical results comparing the performance of the algorithm with the optimum solutions are presented. The proposed algorithm gives quite satisfactory results, it also has a relatively low computational complexity making it applicable to large scale networks.Şengezer, NamıkM.S

    A Multi-Objective ILP Formulation for RWA Problem in WDM Networks

    Get PDF
    All-optical networks employing Wavelength Division Multiplexing (WDM) technique will be the backbone of next generation Internet. In WDM optical networks, each fiber link is logically divided into multiple non-interfering, circuit-switched communication channels known as avelength channels and are identified by the length of the wave.Routing and Wavelength Assignment (RWA) problem is a classical problem in WDM networks. It is further divided into two subproblems: (i) Routing, and (ii)Wavelength Assignment. Routing subproblem finds a route fromsource to destination.Wavelength Assignment subproblem assigns a wavelength to the route established byrouting subproblem. The RWA problem is combinatorial by its nature and belongs to a class of dicult combinatorial optimization problems. The optimal solution to the RWA problem is found to be NP-complete and thus suited to heuristic approaches. RWAproblem is reported in the current literature as an integer linear programming problem (ILP) that typically optimizes a single objective, either minimizes the number amplifiers, the network load or maximizes the number of connections while satisfying power constraints. In this work, we formulated the RWA problem as a multi objective ILP problem. Our primary concern is to establish a loop free lightpath that is immune to signal distortion and crosstalk. An attempt is made to obtain a feasible solution using genetic algorithm (GA). The parameters considered for optimization are congestion among the individual lightpath requests, connection set up time, the number of intermediate hops traversed and the number of fibers used to honor the established connection requests. We onsidered ARPANET (Advanced Research Project Agency NETwork) and NSFNET (National Science Foundation NETwork) for our simulation

    Protection and restoration algorithms for WDM optical networks

    Get PDF
    Currently, Wavelength Division Multiplexing (WDM) optical networks play a major role in supporting the outbreak in demand for high bandwidth networks driven by the Internet. It can be a catastrophe to millions of users if a single optical fiber is somehow cut off from the network, and there is no protection in the design of the logical topology for a restorative mechanism. Many protection and restoration algorithms are needed to prevent, reroute, and/or reconfigure the network from damages in such a situation. In the past few years, many works dealing with these issues have been reported. Those algorithms can be implemented in many ways with several different objective functions such as a minimization of protection path lengths, a minimization of restoration times, a maximization of restored bandwidths, etc. This thesis investigates, analyzes and compares the algorithms that are mainly aimed to guarantee or maximize the amount of remaining bandwidth still working over a damaged network. The parameters considered in this thesis are the routing computation and implementation mechanism, routing characteristics, recovering computation timing, network capacity assignment, and implementing layer. Performance analysis in terms of the restoration efficiency, the hop length, the percentage of bandwidth guaranteed, the network capacity utilization, and the blocking probability is conducted and evaluated

    Characterization, design and re-optimization on multi-layer optical networks

    Get PDF
    L'augment de volum de tràfic IP provocat per l'increment de serveis multimèdia com HDTV o vídeo conferència planteja nous reptes als operadors de xarxa per tal de proveir transmissió de dades eficient. Tot i que les xarxes mallades amb multiplexació per divisió de longitud d'ona (DWDM) suporten connexions òptiques de gran velocitat, aquestes xarxes manquen de flexibilitat per suportar tràfic d’inferior granularitat, fet que provoca un pobre ús d'ample de banda. Per fer front al transport d'aquest tràfic heterogeni, les xarxes multicapa representen la millor solució. Les xarxes òptiques multicapa permeten optimitzar la capacitat mitjançant l'empaquetament de connexions de baixa velocitat dins de connexions òptiques de gran velocitat. Durant aquesta operació, es crea i modifica constantment una topologia virtual dinàmica gràcies al pla de control responsable d’aquestes operacions. Donada aquesta dinamicitat, un ús sub-òptim de recursos pot existir a la xarxa en un moment donat. En aquest context, una re-optimizació periòdica dels recursos utilitzats pot ser aplicada, millorant així l'ús de recursos. Aquesta tesi està dedicada a la caracterització, planificació, i re-optimització de xarxes òptiques multicapa de nova generació des d’un punt de vista unificat incloent optimització als nivells de capa física, capa òptica, capa virtual i pla de control. Concretament s'han desenvolupat models estadístics i de programació matemàtica i meta-heurístiques. Aquest objectiu principal s'ha assolit mitjançant cinc objectius concrets cobrint diversos temes oberts de recerca. En primer lloc, proposem una metodologia estadística per millorar el càlcul del factor Q en problemes d'assignació de ruta i longitud d'ona considerant interaccions físiques (IA-RWA). Amb aquest objectiu, proposem dos models estadístics per computar l'efecte XPM (el coll d'ampolla en termes de computació i complexitat) per problemes IA-RWA, demostrant la precisió d’ambdós models en el càlcul del factor Q en escenaris reals de tràfic. En segon lloc i fixant-nos a la capa òptica, presentem un nou particionament del conjunt de longituds d'ona que permet maximitzar, respecte el cas habitual, la quantitat de tràfic extra proveït en entorns de protecció compartida. Concretament, definim diversos models estadístics per estimar la quantitat de tràfic donat un grau de servei objectiu, i diferents models de planificació de xarxa amb l'objectiu de maximitzar els ingressos previstos i el valor actual net de la xarxa. Després de resoldre aquests problemes per xarxes reals, concloem que la nostra proposta maximitza ambdós objectius. En tercer lloc, afrontem el disseny de xarxes multicapa robustes davant de fallida simple a la capa IP/MPLS i als enllaços de fibra. Per resoldre aquest problema eficientment, proposem un enfocament basat en sobre-dimensionar l'equipament de la capa IP/MPLS i recuperar la connectivitat i el comparem amb la solució convencional basada en duplicar la capa IP/MPLS. Després de comparar solucions mitjançant models ILP i heurístiques, concloem que la nostra solució permet obtenir un estalvi significatiu en termes de costos de desplegament. Com a quart objectiu, introduïm un mecanisme adaptatiu per reduir l'ús de ports opto-electrònics (O/E) en xarxes multicapa sota escenaris de tràfic dinàmic. Una formulació ILP i diverses heurístiques són desenvolupades per resoldre aquest problema, que permet reduir significativament l’ús de ports O/E en temps molt curts. Finalment, adrecem el problema de disseny resilient del pla de control GMPLS. Després de proposar un nou model analític per quantificar la resiliència en topologies mallades de pla de control, usem aquest model per proposar un problema de disseny de pla de control. Proposem un procediment iteratiu lineal i una heurística i els usem per resoldre instàncies reals, arribant a la conclusió que es pot reduir significativament la quantitat d'enllaços del pla de control sense afectar la qualitat de servei a la xarxa.The explosion of IP traffic due to the increase of IP-based multimedia services such as HDTV or video conferencing poses new challenges to network operators to provide a cost-effective data transmission. Although Dense Wavelength Division Multiplexing (DWDM) meshed transport networks support high-speed optical connections, these networks lack the flexibility to support sub-wavelength traffic leading to poor bandwidth usage. To cope with the transport of that huge and heterogeneous amount of traffic, multilayer networks represent the most accepted architectural solution. Multilayer optical networks allow optimizing network capacity by means of packing several low-speed traffic streams into higher-speed optical connections (lightpaths). During this operation, a dynamic virtual topology is created and modified the whole time thanks to a control plane responsible for the establishment, maintenance, and release of connections. Because of this dynamicity, a suboptimal allocation of resources may exist at any time. In this context, a periodically resource reallocation could be deployed in the network, thus improving network resource utilization. This thesis is devoted to the characterization, planning, and re-optimization of next-generation multilayer networks from an integral perspective including physical layer, optical layer, virtual layer, and control plane optimization. To this aim, statistical models, mathematical programming models and meta-heuristics are developed. More specifically, this main objective has been attained by developing five goals covering different open issues. First, we provide a statistical methodology to improve the computation of the Q-factor for impairment-aware routing and wavelength assignment problems (IA-RWA). To this aim we propose two statistical models to compute the Cross-Phase Modulation variance (which represents the bottleneck in terms of computation time and complexity) in off-line and on-line IA-RWA problems, proving the accuracy of both models when computing Q-factor values in real traffic scenarios. Second and moving to the optical layer, we present a new wavelength partitioning scheme that allows maximizing the amount of extra traffic provided in shared path protected environments compared with current solutions. Specifically, we define several statistical models to estimate the traffic intensity given a target grade of service, and different network planning problems for maximizing the expected revenues and net present value. After solving these problems for real networks, we conclude that our proposed scheme maximizes both revenues and NPV. Third, we tackle the design of survivable multilayer networks against single failures at the IP/MPLS layer and WSON links. To efficiently solve this problem, we propose a new approach based on over-dimensioning IP/MPLS devices and lightpath connectivity and recovery and we compare it against the conventional solution based on duplicating backbone IP/MPLS nodes. After evaluating both approaches by means of ILP models and heuristic algorithms, we conclude that our proposed approach leads to significant CAPEX savings. Fourth, we introduce an adaptive mechanism to reduce the usage of opto-electronic (O/E) ports of IP/MPLS-over-WSON multilayer networks in dynamic scenarios. A ILP formulation and several heuristics are developed to solve this problem, which allows significantly reducing the usage of O/E ports in very short running times. Finally, we address the design of resilient control plane topologies in GMPLS-enabled transport networks. After proposing a novel analytical model to quantify the resilience in mesh control plane topologies, we use this model to propose a problem to design the control plane topology. An iterative model and a heuristic are proposed and used to solve real instances, concluding that a significant reduction in the number of control plane links can be performed without affecting the quality of service of the network

    Resource Allocation Schemes And Performance Evaluation Models For Wavelength Division Multiplexed Optical Networks

    Get PDF
    Wavelength division multiplexed (WDM) optical networks are rapidly becoming the technology of choice in network infrastructure and next-generation Internet architectures. WDM networks have the potential to provide unprecedented bandwidth, reduce processing cost, achieve protocol transparency, and enable efficient failure handling. This dissertation addresses the important issues of improving the performance and enhancing the reliability of WDM networks as well as modeling and evaluating the performance of these networks. Optical wavelength conversion is one of the emerging WDM enabling technologies that can significantly improve bandwidth utilization in optical networks. A new approach for the sparse placement of full wavelength converters based on the concept of the k-Dominating Set (k-DS) of a graph is presented. The k-DS approach is also extended to the case of limited conversion capability using three scalable and cost-effective switch designs: flexible node-sharing, strict node-sharing and static mapping. Compared to full search algorithms previously proposed in the literature, the K-DS approach has better blocking performance, has better time complexity and avoids the local minimum problem. The performance benefit of the K-DS approach is demonstrated by extensive simulation. Fiber delay line (FDL) is another emerging WDM technology that can be used to obtain limited optical buffering capability. A placement algorithm, k-WDS, for the sparse placement of FDLs at a set of selected nodes in Optical Burst Switching (OBS) networks is proposed. The algorithm can handle both uniform and non-uniform traffic patterns. Extensive performance tests have shown that k-WDS provides more efficient placement of optical fiber delay lines than the well-known approach of placing the resources at nodes with the highest experienced burst loss. Performance results that compare the benefit of using FDLs versus using optical wavelength converters (OWCs) are presented. A new algorithm, A-WDS, for the placement of an arbitrary numbers of FDLs and OWCs is introduced and is evaluated under different non-uniform traffic loads. This dissertation also introduces a new cost-effective optical switch design using FDL and a QoS-enhanced JET (just enough time) protocol suitable for optical burst switched WDM networks. The enhanced JET protocol allows classes of traffic to benefit from FDLs and OWCs while minimizing the end-to-end delay for high priority bursts. Performance evaluation models of WDM networks represent an important research area that has received increased attention. A new analytical model that captures link dependencies in all-optical WDM networks under uniform traffic is presented. The model enables the estimation of connection blocking probabilities more accurately than previously possible. The basic formula of the dependency between two links in this model reflects their degree of adjacency, the degree of connectivity of the nodes composing them and their carried traffic. The usefulness of the model is illustrated by applying it to the sparse wavelength converters placement problem in WDM networks. A lightpath containing converters is divided into smaller sub-paths such that each sub-path is a wavelength continuous path and the nodes shared between these sub-paths are full wavelength conversion capable. The blocking probability of the entire path is obtained by computing the blocking probabilities of the individual sub-paths. The analytical-based sparse placement algorithm is validated by comparing it with its simulation-based counterpart using a number of network topologies. Rapid recovery from failure and high levels of reliability are extremely important in WDM networks. A new Fault Tolerant Path Protection scheme, FTPP, for WDM mesh networks based on the alarming state of network nodes and links is introduced. The results of extensive simulation tests show that FTPP outperforms known path protection schemes in terms of loss of service ratio and network throughput. The simulation tests used a wide range of values for the load intensity, the failure arrival rate and the failure holding time. The FTPP scheme is next extended to the differentiated services model and its connection blocking performance is evaluated. Finally, a QoS-enhanced FTPP (QEFTPP) routing and path protection scheme in WDM networks is presented. QEFTPP uses preemption to minimize the connection blocking percentage for high priority traffic. Extensive simulation results have shown that QEFTPP achieves a clear QoS differentiation among the traffic classes and provides a good overall network performance

    Improving Routing Efficiency, Fairness, Differentiated Servises And Throughput In Optical Networks

    Get PDF
    Wavelength division multiplexed (WDM) optical networks are rapidly becoming the technology of choice in next-generation Internet architectures. This dissertation addresses the important issues of improving four aspects of optical networks, namely, routing efficiency, fairness, differentiated quality of service (QoS) and throughput. A new approach for implementing efficient routing and wavelength assignment in WDM networks is proposed and evaluated. In this approach, the state of a multiple-fiber link is represented by a compact bitmap computed as the logical union of the bitmaps of the free wavelengths in the fibers of this link. A modified Dijkstra\u27s shortest path algorithm and a wavelength assignment algorithm are developed using fast logical operations on the bitmap representation. In optical burst switched (OBS) networks, the burst dropping probability increases as the number of hops in the lightpath of the burst increases. Two schemes are proposed and evaluated to alleviate this unfairness. The two schemes have simple logic, and alleviate the beat-down unfairness problem without negatively impacting the overall throughput of the system. Two similar schemes to provide differentiated services in OBS networks are introduced. A new scheme to improve the fairness of OBS networks based on burst preemption is presented. The scheme uses carefully designed constraints to avoid excessive wasted channel reservations, reduce cascaded useless preemptions, and maintain healthy throughput levels. A new scheme to improve the throughput of OBS networks based on burst preemption is presented. An analytical model is developed to compute the throughput of the network for the special case when the network has a ring topology and the preemption weight is based solely on burst size. The analytical model is quite accurate and gives results close to those obtained by simulation. Finally, a preemption-based scheme for the concurrent improvement of throughput and burst fairness in OBS networks is proposed and evaluated. The scheme uses a preemption weight consisting of two terms: the first term is a function of the size of the burst and the second term is the product of the hop count times the length of the lightpath of the burst
    corecore