152 research outputs found

    A Color Image Watermarking Scheme Based On QR Factorization, Logistic and Lorentz Chaotic Maps

    Get PDF
    Most of the existing color image watermarking schemes use grayscale or binary image as watermark because color image watermark has more data than grayscale or binary watermark. Therefore, it is a challenging issue to design a color image-watermarking scheme. This paper proposes a novel color image watermarking scheme to embed color image watermark into color host image. In watermarking schemes, first divide the host and watermark image into non-overlapping blocks, apply the Discrete Cosine Transformation (DCT) on each blocks of both watermark, and host image. After that QR Factorization, apply on the each blocks of watermark. In this paper, Logistic and Lorentz chaotic maps are usedfor estimating the embedding strength and location. The experimental results reveal that this watermarking scheme is robust against different image processing attacks viz. cropping, contrast adjustment and coloring

    Robust Image Watermarking Using QR Factorization In Wavelet Domain

    Get PDF
    A robust blind image watermarking algorithm in wavelet transform domain (WT) based on QR factorization, and quantization index modulation (QIM) technique is presented for legal protection of digital images. The host image is decomposed into wavelet subbands, and then the approximation subband is QR factorized. The secret watermark bit is embedded into the R vector in QR using QIM. The experimental results show that the proposed algorithm preserves the high perceptual quality. It also sustains against JPEG compression, and other image processing attacks. The comparison analysis demonstrates the proposed scheme has better performance in imperceptibility and robustness than the previously reported watermarking algorithms

    Robust Watermarking Using FFT and Cordic QR Techniques

    Get PDF
    Digital media sharing and access in today’s world of the internet is very frequent for every user. The management of digital rights may come into threat easily as the accessibility of data through the internet become wide. Sharing digital information under security procedures can be easily compromised due to the various vulnerabilities floating over the internet. Existing research has been tied to protecting internet channels to ensure the safety of digital data. Researchers have investigated various encryption techniques to prevent digital rights management but certain challenges including external potential attacks cannot be avoided that may give unauthorized access to digital media. The proposed model endorsed the concept of watermarking in digital data to uplift media security and ensure digital rights management. The system provides an efficient procedure to conduct over-watermarking in digital audio signals and confirm the avoidance of ownership of the host data. The proposed technique uses a watermark picture as a signature that has been initially encrypted with Arnold's cat map and cyclic encoding before being embedded. The upper triangular R-matrix component of the energy band was then created by using the Fast Fourier transform and Cordic QR procedures to the host audio stream. Using PN random sequences, the encrypted watermarking image has been embedded in the host audio component of the R-matrix. The same procedure has been applied to extract the watermark image from the watermarked audio. The proposed model evaluates the quality of the watermarked audio and extracted watermark image. The average PSNR of the watermarked audio is found to be 37.01 dB. It has also been seen that the average PSNR, Normal cross-correlation, BER, SSMI (structure similarity index matric) value for the extracted watermark image is found to be 96.30 dB, 0.9042 units, 0.1033 units, and 0.9836 units respectively. Further, the model has been tested using various attacks to check its robustness. After applying attacks such as noising, filtering, cropping, and resampling on the watermarked audio, the watermark image has been extricated and its quality has been checked under the standard parameters. It has been found that the quality of the recovered watermark image satisfying enough to justify the digital ownership of the host audio. Hence, the proposed watermarking model attains a perfect balance between imperceptibility, payload, and robustness

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Additional information delivery to image content via improved unseen–visible watermarking

    Get PDF
    In a practical watermark scenario, watermarks are used to provide auxiliary information; in this way, an analogous digital approach called unseen–visible watermark has been introduced to deliver auxiliary information. In this algorithm, the embedding stage takes advantage of the visible and invisible watermarking to embed an owner logotype or barcodes as watermarks; in the exhibition stage, the equipped functions of the display devices are used to reveal the watermark to the naked eyes, eliminating any watermark exhibition algorithm. In this paper, a watermark complement strategy for unseen–visible watermarking is proposed to improve the embedding stage, reducing the histogram distortion and the visual degradation of the watermarked image. The presented algorithm exhibits the following contributions: first, the algorithm can be applied to any class of images with large smooth regions of low or high intensity; second, a watermark complement strategy is introduced to reduce the visual degradation and histogram distortion of the watermarked image; and third, an embedding error measurement is proposed. Evaluation results show that the proposed strategy has high performance in comparison with other algorithms, providing a high visual quality of the exhibited watermark and preserving its robustness in terms of readability and imperceptibility against geometric and processing attacks

    Optimized DWT Based Digital Image Watermarking and Extraction Using RNN-LSTM

    Get PDF
    The rapid growth of Internet and the fast emergence of multi-media applications over the past decades have led to new problems such as illegal copying, digital plagiarism, distribution and use of copyrighted digital data. Watermarking digital data for copyright protection is a current need of the community. For embedding watermarks, robust algorithms in die media will resolve copyright infringements. Therefore, to enhance the robustness, optimization techniques and deep neural network concepts are utilized. In this paper, the optimized Discrete Wavelet Transform (DWT) is utilized for embedding the watermark. The optimization algorithm is a combination of Simulated Annealing (SA) and Tunicate Swarm Algorithm (TSA). After performing the embedding process, the extraction is processed by deep neural network concept of Recurrent Neural Network based Long Short-Term Memory (RNN-LSTM). From the extraction process, the original image is obtained by this RNN-LSTM method. The experimental set up is carried out in the MATLAB platform. The performance metrics of PSNR, NC and SSIM are determined and compared with existing optimization and machine learning approaches. The results are achieved under various attacks to show the robustness of the proposed work
    • …
    corecore