140 research outputs found

    Using annotated interface definitions to optimize RPC

    Get PDF
    Journal ArticleIn RPC-based communication, it is useful to distinguish the RPC interface, which is the "network contract" between the client and the server, from the presentation, which is the "programmer's contract" between the RPC stubs and the code that calls or is called by them. Presentation is usually a fixed function of the RPC interface, but some RPC systems, such as DCE and Concert, support the notion of a flexible presentation or endpoint modifier, allowing controlled modification of the behavior of the stubs on each side without affecting the contract between the client and the server. Up until now, the primary motivation for flexible presentation has been for programmer convenience and improved interoperability. However, we have found flexible presentation also to be useful for optimization of RPC, and in many cases necessary to achieving maximal performance without throwing out the RPC system and resorting to hand-coded stubs. In this paper we provide examples demonstrating this point for a number of different operating systems and IPC transport mechanisms, with RPC performance improvements ranging from 5% to an order of magnitude. In general, we observe that the more efficient the underlying IPC transport mechanism is, the more important it is for the RPC system to support flexible presentation, in order to avoid unnecessary user-space overhead?

    Patterns for Providing Real-Time Guarantees in DOC Middleware - Doctoral Dissertation, May 2002

    Get PDF
    The advent of open and widely adopted standards such as Common Object Request Broker Architecture (CORBA) [47] has simplified and standardized the development of distributed applications. For applications with real-time constraints, including avionics, manufacturing, and defense systems, these standards are evolving to include Quality-of-Service (QoS) specifications. Operating systems such as Real-time Linux [60] have responded with interfaces and algorithms to guarantee real-time response; similarly, languages such as Real-time Java [59] include mechanisms for specifying real-time properties for threads. However, the middleware upon which large distributed applications are based has not yet addressed end-to-end guarantees of QoS specifications. Unless this challenge can be met, developers must resort to ad hoc solutions that may not scale or migrate well among different platforms. This thesis provides two contributions to the study of real-time Distributed Object Computing (DOC) middleware. First, it identifies potential bottlenecks and problems with respect to guaranteeing real-time performance in contemporary middleware. Experimental results illustrate how these problems lead to incorrect real-time behavior in contemporary middleware platforms. Second, this thesis presents designs and techniques for providing real-time QoS guarantees in DOC middleware in the context of TAO [6], an open-source and widely adopted implementation of real-time CORBA. Architectural solutions presented here are coupled with empirical evaluations of end-to-end real-time behavior. Analysis of the problems, forces, solutions, and consequences are presented in terms of patterns and frame-works, so that solutions obtained for TAO can be appropriately applied to other real-time systems

    Communication in Microkernel-Based Operating Systems

    Get PDF
    Communication in microkernel-based systems is much more frequent than system calls known from monolithic kernels. This can be attributed to the placement of system services into their own protection domains. Communication has to be fast to avoid unnecessary overhead. Also, communication channels in microkernel-based systems are used for more than just remote procedure calls. In distributed systems, which also have a componentized design, it is state of the art to use tools to generate stubs for the communication between components. The communication interfaces of components are described in an interface definition language (IDL). In contrast to distributed systems, components of a microkernel-based system run on the same architecture and message delivery is guaranteed. In this Thesis, I explore the different kinds of communication, which can be used in microkernel-based systems, as well as their possible representation in IDL. Specifically, I introduce the syntax to describe kernel objects in IDL. I discuss the complexity of IDL compilers and its relation to the complexity of the IDL. Furthermore, I evaluate the performance of the communication stubs generated by different IDL compilers and discuss techniques to minimize performance overhead in generated stubs. I validated these techniques by implementing the Drops IDL Compiler - Dice. Finally, this Thesis presents a mechanism to measure the frequency and performance of invocations of generated communication code. I used this technique to conduct measurements in highly complex systems and introducing the least possible overhead

    Communication in Microkernel-Based Operating Systems

    Get PDF
    Communication in microkernel-based systems is much more frequent than system calls known from monolithic kernels. This can be attributed to the placement of system services into their own protection domains. Communication has to be fast to avoid unnecessary overhead. Also, communication channels in microkernel-based systems are used for more than just remote procedure calls. In distributed systems, which also have a componentized design, it is state of the art to use tools to generate stubs for the communication between components. The communication interfaces of components are described in an interface definition language (IDL). In contrast to distributed systems, components of a microkernel-based system run on the same architecture and message delivery is guaranteed. In this Thesis, I explore the different kinds of communication, which can be used in microkernel-based systems, as well as their possible representation in IDL. Specifically, I introduce the syntax to describe kernel objects in IDL. I discuss the complexity of IDL compilers and its relation to the complexity of the IDL. Furthermore, I evaluate the performance of the communication stubs generated by different IDL compilers and discuss techniques to minimize performance overhead in generated stubs. I validated these techniques by implementing the Drops IDL Compiler - Dice. Finally, this Thesis presents a mechanism to measure the frequency and performance of invocations of generated communication code. I used this technique to conduct measurements in highly complex systems and introducing the least possible overhead

    Analysis of embedded CORBA middleware performance on urban distributed transportation equipments

    Get PDF
    The increasing number of ITS (Intelligent Transportation Systems) equipment spread across cities offers tre- mendous possibilities in the development of distributed smart environments. A middleware layer located be- tween the operating system and the fi nal application can be used for the communication among the equipment to spontaneously act and cooperate among themselves. However, this middleware layer has also a computational cost that should be quanti fi ed as it can affect the main application. This paper de fi nes a methodology for such quanti fi cation using as case example a modern ITS equipment related to vehicle tracking using arti fi cial vision. Experimental results illustrate the proposed methodology.Ministerio de Educación y Ciencia DPI2007-60128Consejería de Innovación, Ciencia y Empresa P07-TIC-0262

    Communication in Microkernel-Based Operating Systems

    Get PDF
    Communication in microkernel-based systems is much more frequent than system calls known from monolithic kernels. This can be attributed to the placement of system services into their own protection domains. Communication has to be fast to avoid unnecessary overhead. Also, communication channels in microkernel-based systems are used for more than just remote procedure calls. In distributed systems, which also have a componentized design, it is state of the art to use tools to generate stubs for the communication between components. The communication interfaces of components are described in an interface definition language (IDL). In contrast to distributed systems, components of a microkernel-based system run on the same architecture and message delivery is guaranteed. In this Thesis, I explore the different kinds of communication, which can be used in microkernel-based systems, as well as their possible representation in IDL. Specifically, I introduce the syntax to describe kernel objects in IDL. I discuss the complexity of IDL compilers and its relation to the complexity of the IDL. Furthermore, I evaluate the performance of the communication stubs generated by different IDL compilers and discuss techniques to minimize performance overhead in generated stubs. I validated these techniques by implementing the Drops IDL Compiler - Dice. Finally, this Thesis presents a mechanism to measure the frequency and performance of invocations of generated communication code. I used this technique to conduct measurements in highly complex systems and introducing the least possible overhead

    Engineering analysis and literature review of the use of CORBA in distributed object-oriented systems

    Full text link

    Distributed urban traffic applications based on CORBA event services

    Get PDF
    Intelligent transportation systems (ITS) in urban environments are based today on modern embedded systems with enhanced digital connectivity and higher processing capabilities, supporting distributed applications working in a cooperative manner. This paper provides an overview about modern cooperative ITS equipments and presents a distributed application to be used in an urban data network. As a case example, an application based on an embedded CORBA-compliant middleware layer and several computer vision equipments is presented. Results prove the feasibility of distributed applications for building intelligent urban environments
    corecore