2,474 research outputs found

    Machine learning adaptive computational capacity prediction for dynamic resource management in C-RAN

    Get PDF
    Efficient computational resource management in 5G Cloud Radio Access Network (C-RAN)environments is a challenging problem because it has to account simultaneously for throughput, latency,power efficiency, and optimization tradeoffs. The assumption of a fixed computational capacity at thebaseband unit (BBU) pools may result in underutilized or oversubscribed resources, thus affecting the overallQuality of Service (QoS). As resources are virtualized at the BBU pools, they could be dynamically instan-tiated according to the required computational capacity (RCC). In this paper, a new strategy for DynamicResource Management with Adaptive Computational capacity (DRM-AC) using machine learning (ML)techniques is proposed. Three ML algorithms have been tested to select the best predicting approach: supportvector machine (SVM), time-delay neural network (TDNN), and long short-term memory (LSTM). DRM-AC reduces the average of unused resources by 96 %, but there is still QoS degradation when RCC is higherthan the predicted computational capacity (PCC). To further improve, two new strategies are proposed andtested in a realistic scenario: DRM-AC with pre-filtering (DRM-AC-PF) and DRM-AC with error shifting(DRM-AC-ES), reducing the average of unsatisfied resources by 98 % and 99.9 % compared to the DRM-AC, respectivelyThis work was supported in part by the Spanish ministry of science through the project CRIN-5G (RTI2018-099880-B-C32) withERDF (European Regional Development Fund) and in part by the UPC through COST CA15104 IRACON EU Project and theFPI-UPC-2018 Grant.Peer ReviewedPostprint (published version

    TCM, TTCM, BICM and BICM-ID Assisted MMSE Multi-User Detected SDMA-OFDM Using Walsh-Hadamard Spreading

    No full text
    Space Division Multiple Access (SDMA) aided Orthogonal Frequency Division Multiplexing (OFDM) systems assisted by efficient Multi-User Detection (MUD) techniques have recently attracted intensive research interests. Forward Error Correction (FEC) schemes and frequency-domain spreading techniques can be efficiently amalgamated with SDMA-OFDM systems for the sake of improving the achievable performance. In this contribution a Coded Modulation (CM) assisted and Minimum Mean-Square Error (MMSE) multi-user detected SDMA-OFDM system combined with Walsh-Hadamard-Transform-Spreading (WHTS) across a number of subcarriers is proposed. The various CM schemes used are Trellis Coded Modulation (TCM), Turbo TCM (TTCM), Bit-Interleaved Coded Modulation (BICM) and Iteratively Decoded BICM (BICM-ID), which constitute bandwidth efficient schemes that combine the functions of coding and modulation. Invoking the WHTS technique is capable of further improving the average Bit Error Rate (BER) performance of the CM-SDMA-OFDM system, since the bursty error effects imposed by the frequency-domain fading encountered are spread over the entire WHT block length, therefore increasing the chances of correcting the transmission errors by the CM decoders

    Resource management with adaptive capacity in C-RAN

    Get PDF
    This work was supported in part by the Spanish ministry of science through the projectRTI2018-099880-B-C32, with ERFD funds, and the Grant FPI-UPC provided by theUPC. It has been done under COST CA15104 IRACON EU project.Efficient computational resource management in 5G Cloud Radio Access Network (CRAN) environments is a challenging problem because it has to account simultaneously for throughput, latency, power efficiency, and optimization tradeoffs. This work proposes the use of a modified and improved version of the realistic Vienna Scenario that was defined in COST action IC1004, to test two different scale C-RAN deployments. First, a large-scale analysis with 628 Macro-cells (Mcells) and 221 Small-cells (Scells) is used to test different algorithms oriented to optimize the network deployment by minimizing delays, balancing the load among the Base Band Unit (BBU) pools, or clustering the Remote Radio Heads (RRH) efficiently to maximize the multiplexing gain. After planning, real-time resource allocation strategies with Quality of Service (QoS) constraints should be optimized as well. To do so, a realistic small-scale scenario for the metropolitan area is defined by modeling the individual time-variant traffic patterns of 7000 users (UEs) connected to different services. The distribution of resources among UEs and BBUs is optimized by algorithms, based on a realistic calculation of the UEs Signal to Interference and Noise Ratios (SINRs), that account for the required computational capacity per cell, the QoS constraints and the service priorities. However, the assumption of a fixed computational capacity at the BBU pools may result in underutilized or oversubscribed resources, thus affecting the overall QoS. As resources are virtualized at the BBU pools, they could be dynamically instantiated according to the required computational capacity (RCC). For this reason, a new strategy for Dynamic Resource Management with Adaptive Computational capacity (DRM-AC) using machine learning (ML) techniques is proposed. Three ML algorithms have been tested to select the best predicting approach: support vector machine (SVM), time-delay neural network (TDNN), and long short-term memory (LSTM). DRM-AC reduces the average of unused resources by 96 %, but there is still QoS degradation when RCC is higher than the predicted computational capacity (PCC). For this reason, two new strategies are proposed and tested: DRM-AC with pre-filtering (DRM-AC-PF) and DRM-AC with error shifting (DRM-AC-ES), reducing the average of unsatisfied resources by 99.9 % and 98 % compared to the DRM-AC, respectively

    Digital Rights Management - Current Status and Future Trends

    Get PDF

    Digital Rights Management and Consumer Acceptability: A Multi-Disciplinary Discussion of Consumer Concerns and Expectations

    Get PDF
    The INDICARE project – the Informed Dialogue about Consumer Acceptability of DRM Solutions in Europe – has been set up to raise awareness about consumer and user issues of Digital Rights Management (DRM) solutions. One of the main goals of the INDICARE project is to contribute to the consensus-building among multiple players with heterogeneous interests in the digital environment. To promote this process and to contribute to the creation of a common level of understanding is the aim of the present report. It provides an overview of consumer concerns and expectations regarding DRMs, and discusses the findings from a social, legal, technical and business perspective. A general overview of the existing EC initiatives shows that questions of consumer acceptability of DRM have only recently begun to draw wider attention. A review of the relevant statements, studies and reports confirms that awareness of consumer concerns is still at a low level. Five major categories of concerns have been distinguished so far: (1) fair conditions of use and access to digital content, (2) privacy, (3) interoperability, (4) transparency and (5) various aspects of consumer friendliness. From the legal point of view, many of the identified issues go beyond the scope of copyright law, i.e. the field of law where DRM was traditionally discussed. Often they are a matter of general or sector-specific consumer protection law. Furthermore, it is still unclear to what extent technology and an appropriate design of technical solutions can provide an answer to some of the concerns of consumers. One goal of the technical chapter was exactly to highlight some of these technical possibilities. Finally, it is shown that consumer acceptability of DRM is important for the economic success of different business models based on DRM. Fair and responsive DRM design can be a profitable strategy, however DRM-free alternatives do exist too.Digital Rights Management; consumers; Intellectual property; business models

    Multiparty multilevel watermarking protocol for digital secondary market based on iris recognition technology

    Get PDF
    Background: In order to design secure digital right management architecture between different producers and different consumers, this paper proposes a multiparty and multilevel watermarking protocol for primary and secondary market. Comparing with the traditional buyer-seller watermarking protocols, this paper makes several outstanding achievements. Method: First of all, this paper extends traditional buyer-seller two-party architecture to multiparty architecture which contains producer, multiply distributors, consumers, etc. Secondly, this paper pays more attention on the security issues, for example, this paper applies iris recognition technology as an advanced security method. Conclusion: Finally, this paper also presents a second-hand market scheme to overcome the copyright issues that may happen in the real world. © 2017 Bentham Science Publishers

    HUC-HISF: A Hybrid Intelligent Security Framework for Human-centric Ubiquitous Computing

    Get PDF
    戶ćșŠ:新 ; 栱摊ç•Șć·:äč™2336ć· ; ć­ŠäœăźçšźéĄž:ćšćŁ«(äșș間科歩) ; 授䞎ćčŽæœˆæ—„:2012/1/18 ; æ—©ć€§ć­Šäœèš˜ç•Șć·:新584
    • 

    corecore