1,215 research outputs found

    Un modelo para resolver el problema dinámico de despacho de vehículos con incertidumbre de clientes y con tiempos de viaje en arcos

    Get PDF
    Indexación: Web of Science; ScieloIn a real world case scenario, customer demands are requested at any time of the day requiring services that are not known in advance such as delivery or repairing equipment. This is called Dynamic Vehicle Routing (DVR) with customer uncertainty environment. The link travel time for the roadway network varies with time as traffic fluctuates adding an additional component to the dynamic environment. This paper presents a model for solving the DVR problem while combining these two dynamic aspects (customer uncertainty and link travel time). The proposed model employs Greedy, Insertion, and Ant Colony Optimization algorithms. The Greedy algorithm is utilized for constructing new routes with existing customers, and the remaining two algorithms are employed for rerouting as new customer demands appear. A real world application is presented to simulate vehicle routing in a dynamic environment for the city of Taipei, Taiwan. The simulation shows that the model can successfully plan vehicle routes to satisfy all customer demands and help managers in the decision making process.En un escenario real, los pedidos de los clientes son solicitados a cualquier hora del día requiriendo servicios que no han sido planificados con antelación tales como los despachos o la reparación de equipos. Esto es llamado ruteo dinámico de vehículos (RDV) considerando un ambiente con incertidumbre de clientes. El tiempo de viaje en una red vial varía con el tiempo a medida que el tráfico vehicular fluctúa agregando una componente adicional al ambiente dinámico. Este artículo propone un modelo para resolver el problema RDV combinando estos dos aspectos dinámicos. El modelo propuesto utiliza los algoritmos Greedy, Inserción y optimización basada en colonias de hormigas. El algoritmo Greedy es utilizado para construir nuevas rutas con los clientes existentes y los otros dos algoritmos son usados para rutear vehículos a medida que surjan nuevos clientes con sus respectivos pedidos. Además, se presenta una aplicación real para simular el ruteo vehicular en un ambiente dinámico para la ciudad de Taipei, Taiwán. Esta simulación muestra que el modelo es capaz de planificar exitosamente las rutas vehiculares satisfaciendo los pedidos de los clientes y de ayudar los gerentes en el proceso de toma de decisiones.http://ref.scielo.org/3ryfh

    An efficient ant colony system based on receding horizon control for the aircraft arrival sequencing and scheduling problem

    Get PDF
    The aircraft arrival sequencing and scheduling (ASS) problem is a salient problem in air traffic control (ATC), which proves to be nondeterministic polynomial (NP) hard. This paper formulates the ASS problem in the form of a permutation problem and proposes a new solution framework that makes the first attempt at using an ant colony system (ACS) algorithm based on the receding horizon control (RHC) to solve it. The resultant RHC-improved ACS algorithm for the ASS problem (termed the RHC-ACS-ASS algorithm) is robust, effective, and efficient, not only due to that the ACS algorithm has a strong global search ability and has been proven to be suitable for these kinds of NP-hard problems but also due to that the RHC technique can divide the problem with receding time windows to reduce the computational burden and enhance the solution's quality. The RHC-ACS-ASS algorithm is extensively tested on the cases from the literatures and the cases randomly generated. Comprehensive investigations are also made for the evaluation of the influences of ACS and RHC parameters on the performance of the algorithm. Moreover, the proposed algorithm is further enhanced by using a two-opt exchange heuristic local search. Experimental results verify that the proposed RHC-ACS-ASS algorithm generally outperforms ordinary ACS without using the RHC technique and genetic algorithms (GAs) in solving the ASS problems and offers high robustness, effectiveness, and efficienc

    An Ant-based Approach for Dynamic RWA in Optical WDM Networks

    Get PDF

    FARS: Fuzzy Ant based Recommender System for Web Users

    Get PDF
    Recommender systems are useful tools which provide an adaptive web environment for web users. Nowadays, having a user friendly website is a big challenge in e-commerce technology. In this paper, applying the benefits of both collaborative and content based filtering techniques is proposed by presenting a fuzzy recommender system based on collaborative behavior of ants (FARS). FARS works in two phases: modeling and recommendation. First, user’s behaviors are modeled offline and the results are used in second phase for online recommendation. Fuzzy techniques provide the possibility of capturing uncertainty among user interests and ant based algorithms provides us with optimal solutions. The performance of FARS is evaluated using log files of “Information and Communication Technology Center” of Isfahan municipality in Iran and compared with ant based recommender system (ARS). The results shown are promising and proved that integrating fuzzy Ant approach provides us with more functional and robust recommendations

    Secure and robust multi-constrained QoS aware routing algorithm for VANETs

    Get PDF
    Secure QoS routing algorithms are a fundamental part of wireless networks that aim to provide services with QoS and security guarantees. In Vehicular Ad hoc Networks (VANETs), vehicles perform routing functions, and at the same time act as end-systems thus routing control messages are transmitted unprotected over wireless channels. The QoS of the entire network could be degraded by an attack on the routing process, and manipulation of the routing control messages. In this paper, we propose a novel secure and reliable multi-constrained QoS aware routing algorithm for VANETs. We employ the Ant Colony Optimisation (ACO) technique to compute feasible routes in VANETs subject to multiple QoS constraints determined by the data traffic type. Moreover, we extend the VANET-oriented Evolving Graph (VoEG) model to perform plausibility checks on the exchanged routing control messages among vehicles. Simulation results show that the QoS can be guaranteed while applying security mechanisms to ensure a reliable and robust routing service

    Adaptive multimodal continuous ant colony optimization

    Get PDF
    Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization algorithms in preserving high diversity, this paper intends to extend ant colony optimization algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ant colony optimization algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima

    A Multi-Objective Mission Planning Method for AUV Target Search

    Get PDF
    How an autonomous underwater vehicle (AUV) performs fully automated task allocation and achieves satisfactory mission planning effects during the search for potential threats deployed in an underwater space is the focus of the paper. First, the task assignment problem is defined as a traveling salesman problem (TSP) with specific and distinct starting and ending points. Two competitive and non-commensurable optimization goals, the total sailing distance and the turning angle generated by an AUV to completely traverse threat points in the planned order, are taken into account. The maneuverability limitations of an AUV, namely, minimum radius of a turn and speed, are also introduced as constraints. Then, an improved ant colony optimization (ACO) algorithm based on fuzzy logic and a dynamic pheromone volatilization rule is developed to solve the TSP. With the help of the fuzzy set, the ants that have moved along better paths are screened and the pheromone update is performed only on preferred paths so as to enhance pathfinding guidance in the early stage of the ACO algorithm. By using the dynamic pheromone volatilization rule, more volatile pheromones on preferred paths are produced as the number of iterations of the ACO algorithm increases, thus providing an effective way for the algorithm to escape from a local minimum in the later stage. Finally, comparative simulations are presented to illustrate the effectiveness and advantages of the proposed algorithm and the influence of critical parameters is also analyzed and demonstrated.National Natural Science Foundation of China (NSFC) 52101347Foundations for young scientists' cultivation 7900000

    Ants constructing rule-based classifiers.

    Get PDF
    Classifiers; Data; Data mining; Studies;
    corecore