1,567 research outputs found

    Exact two-time correlation and response functions in the one-dimensional coagulation-diffusion process by the empty-interval-particle method

    Full text link
    The one-dimensional coagulation-diffusion process describes the strongly fluctuating dynamics of particles, freely hopping between the nearest-neighbour sites of a chain such that one of them disappears with probability 1 if two particles meet. The exact two-time correlation and response function in the one-dimensional coagulation-diffusion process are derived from the empty-interval-particle method. The main quantity is the conditional probability of finding an empty interval of n consecutive sites, if at distance d a site is occupied by a particle. Closed equations of motion are derived such that the probabilities needed for the calculation of correlators and responses, respectively, are distinguished by different initial and boundary conditions. In this way, the dynamical scaling of these two-time observables is analysed in the longtime ageing regime. A new generalised fluctuation-dissipation ratio with an universal and finite limit is proposed.Comment: 31 pages, submitted to J.Stat.Mec

    Accurate Spectral Algorithms for Solving Variable-order Fractional Percolation Equations

    Get PDF
    A high accurate spectral algorithm for one-dimensional variable-order fractional percolation equations (VO-FPEs) is considered.We propose a shifted Legendre Gauss-Lobatto collocation (SL-GLC) method in conjunction with shifted Chebyshev Gauss-Radau collocation (SC-GR-C) method to solve the proposed problem. Firstly, the solution and its space fractional derivatives are expanded as shifted Legendre polynomials series. Then, we determine the expansion coefficients by reducing the VO-FPEs and its conditions to a system of ordinary differential equations (SODEs) in time. The numerical approximation of SODEs is achieved by means of the SC-GR-C method. The under-study’s problem subjected to the Dirichlet or non-local boundary conditions is presented and compared with the results in literature, which reveals wonderful results

    Multiscale simulations of porous media flows in flow-based coordinate system

    Get PDF
    In this paper, we propose a multiscale technique for the simulation of porous media flows in a flow-based coordinate system. A flow-based coordinate system allows us to simplify the scale interaction and derive the upscaled equations for purely hyperbolic transport equations. We discuss the applications of the method to two-phase flows in heterogeneous porous media. For two-phase flow simulations, the use of a flow-based coordinate system requires limited global information, such as the solution of single-phase flow. Numerical results show that one can achieve accurate upscaling results using a flow-based coordinate system

    Anomalous transport resolved in space and time by fluorescence correlation spectroscopy

    Get PDF
    A ubiquitous observation in crowded cell membranes is that molecular transport does not follow Fickian diffusion but exhibits subdiffusion. The microscopic origin of such a behaviour is not understood and highly debated. Here we discuss the spatio-temporal dynamics for two models of subdiffusion: fractional Brownian motion and hindered motion due to immobile obstacles. We show that the different microscopic mechanisms can be distinguished using fluorescence correlation spectroscopy (FCS) by systematic variation of the confocal detection area. We provide a theoretical framework for space-resolved FCS by generalising FCS theory beyond the common assumption of spatially Gaussian transport. We derive a master formula for the FCS autocorrelation function, from which it is evident that the beam waist of an FCS experiment is a similarly important parameter as the wavenumber of scattering experiments. These results lead to scaling properties of the FCS correlation for both models, which are tested by in silico experiments. Further, our scaling prediction is compatible with the FCS half-value times reported by Wawrezinieck et al. [Biophys. J. 89, 4029 (2005)] for in vivo experiments on a transmembrane protein.Comment: accepted for publication in Soft Matte

    Minkowski Tensors in Two Dimensions - Probing the Morphology and Isotropy of the Matter and Galaxy Density Fields

    Full text link
    We apply the Minkowski Tensor statistics to two dimensional slices of the three dimensional density field. The Minkowski Tensors are a set of functions that are sensitive to directionally dependent signals in the data, and furthermore can be used to quantify the mean shape of density peaks. We begin by introducing our algorithm for constructing bounding perimeters around subsets of a two dimensional field, and reviewing the definition of Minkowski Tensors. Focusing on the translational invariant statistic W21,1W^{1,1}_{2} - a 2×22 \times 2 matrix - we calculate its eigenvalues for both the entire excursion set (Λ1,Λ2\Lambda_{1},\Lambda_{2}) and for individual connected regions and holes within the set (λ1,λ2\lambda_{1},\lambda_{2}). The ratio of eigenvalues Λ2/Λ1\Lambda_{2}/\Lambda_{1} informs us of the presence of global anisotropies in the data, and λ2/λ1\langle \lambda_{2}/\lambda_{1} \rangle is a measure of the mean shape of peaks and troughs in the density field. We study these quantities for a Gaussian field, then consider how they are modified by the effect of gravitational collapse using the latest Horizon Run 4 cosmological simulation. We find Λ1,2\Lambda_{1,2} are essentially independent of gravitational collapse, as the process maintains statistical isotropy. However, the mean shape of peaks is modified significantly - overdensities become relatively more circular compared to underdensities of the same area. When applying the statistic to a redshift space distorted density field, we find a significant signal in the eigenvalues Λ1,2\Lambda_{1,2}, suggesting that they can be used to probe the large-scale velocity field.Comment: 17 pages, accepted for publication in AP

    Non-coincidence of Quenched and Annealed Connective Constants on the supercritical planar percolation cluster

    Full text link
    In this paper, we study the abundance of self-avoiding paths of a given length on a supercritical percolation cluster on \bbZ^d. More precisely, we count ZNZ_N the number of self-avoiding paths of length NN on the infinite cluster, starting from the origin (that we condition to be in the cluster). We are interested in estimating the upper growth rate of ZNZ_N, lim supNZN1/N\limsup_{N\to \infty} Z_N^{1/N}, that we call the connective constant of the dilute lattice. After proving that this connective constant is a.s.\ non-random, we focus on the two-dimensional case and show that for every percolation parameter p(1/2,1)p\in (1/2,1), almost surely, ZNZ_N grows exponentially slower than its expected value. In other word we prove that \limsup_{N\to \infty} (Z_N)^{1/N} <\lim_{N\to \infty} \bbE[Z_N]^{1/N} where expectation is taken with respect to the percolation process. This result can be considered as a first mathematical attempt to understand the influence of disorder for self-avoiding walk on a (quenched) dilute lattice. Our method, which combines change of measure and coarse graining arguments, does not rely on specifics of percolation on \bbZ^2, so that our result can be extended to a large family of two dimensional models including general self-avoiding walk in random environment.Comment: 25 pages. Version accepted for publication in PTR

    Persistence and First-Passage Properties in Non-equilibrium Systems

    Full text link
    In this review we discuss the persistence and the related first-passage properties in extended many-body nonequilibrium systems. Starting with simple systems with one or few degrees of freedom, such as random walk and random acceleration problems, we progressively discuss the persistence properties in systems with many degrees of freedom. These systems include spins models undergoing phase ordering dynamics, diffusion equation, fluctuating interfaces etc. Persistence properties are nontrivial in these systems as the effective underlying stochastic process is non-Markovian. Several exact and approximate methods have been developed to compute the persistence of such non-Markov processes over the last two decades, as reviewed in this article. We also discuss various generalisations of the local site persistence probability. Persistence in systems with quenched disorder is discussed briefly. Although the main emphasis of this review is on the theoretical developments on persistence, we briefly touch upon various experimental systems as well.Comment: Review article submitted to Advances in Physics: 149 pages, 21 Figure

    The implementation and validation of improved landsurface hydrology in an atmospheric general circulation model

    Get PDF
    Landsurface hydrological parameterizations are implemented in the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: (1) runoff and evapotranspiration functions that include the effects of subgrid scale spatial variability and use physically based equations of hydrologic flux at the soil surface, and (2) a realistic soil moisture diffusion scheme for the movement of water in the soil column. A one dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three dimensional GCM. Results of the final simulation with the GISS GCM and the new landsurface hydrology indicate that the runoff rate, especially in the tropics is significantly improved. As a result, the remaining components of the heat and moisture balance show comparable improvements when compared to observations. The validation of model results is carried from the large global (ocean and landsurface) scale, to the zonal, continental, and finally the finer river basin scales
    corecore