303 research outputs found

    Fully implicit frictional dynamics with soft constraints

    Full text link
    Dynamics simulation with frictional contacts is important for a wide range of applications, from cloth simulation to object manipulation. Recent methods using smoothed friction forces have enabled robust and differentiable simulation of elastodynamics with friction. However, the resulting frictional behaviors can be qualitatively inaccurate and may not converge to analytic solutions. Here we propose an alternative, fully implicit, formulation for simulating elastodynamics subject to frictional contacts with realistic friction behavior. Furthermore, we demonstrate how higher-order time integration can be used in our method, as well as in incremental potential methods. We develop an inexact Newton method with forward-mode automatic differentiation that simplifies the implementation and improves performance. Finally, we show how our method can be extended to respond to volume changes using a unified penalty function derived from first principles and capable of emulating compressible as well as nearly incompressible media

    DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact

    Full text link
    Cloth simulation has wide applications in computer animation, garment design, and robot-assisted dressing. This work presents a differentiable cloth simulator whose additional gradient information facilitates cloth-related applications. Our differentiable simulator extends a state-of-the-art cloth simulator based on Projective Dynamics (PD) and with dry frictional contact. We draw inspiration from previous work to propose a fast and novel method for deriving gradients in PD-based cloth simulation with dry frictional contact. Furthermore, we conduct a comprehensive analysis and evaluation of the usefulness of gradients in contact-rich cloth simulation. Finally, we demonstrate the efficacy of our simulator in a number of downstream applications, including system identification, trajectory optimization for assisted dressing, closed-loop control, inverse design, and real-to-sim transfer. We observe a substantial speedup obtained from using our gradient information in solving most of these applications

    NeuralClothSim: Neural Deformation Fields Meet the Kirchhoff-Love Thin Shell Theory

    Full text link
    Cloth simulation is an extensively studied problem, with a plethora of solutions available in computer graphics literature. Existing cloth simulators produce realistic cloth deformations that obey different types of boundary conditions. Nevertheless, their operational principle remains limited in several ways: They operate on explicit surface representations with a fixed spatial resolution, perform a series of discretised updates (which bounds their temporal resolution), and require comparably large amounts of storage. Moreover, back-propagating gradients through the existing solvers is often not straightforward, which poses additional challenges when integrating them into modern neural architectures. In response to the limitations mentioned above, this paper takes a fundamentally different perspective on physically-plausible cloth simulation and re-thinks this long-standing problem: We propose NeuralClothSim, i.e., a new cloth simulation approach using thin shells, in which surface evolution is encoded in neural network weights. Our memory-efficient and differentiable solver operates on a new continuous coordinate-based representation of dynamic surfaces, i.e., neural deformation fields (NDFs); it supervises NDF evolution with the rules of the non-linear Kirchhoff-Love shell theory. NDFs are adaptive in the sense that they 1) allocate their capacity to the deformation details as the latter arise during the cloth evolution and 2) allow surface state queries at arbitrary spatial and temporal resolutions without retraining. We show how to train our NeuralClothSim solver while imposing hard boundary conditions and demonstrate multiple applications, such as material interpolation and simulation editing. The experimental results highlight the effectiveness of our formulation and its potential impact.Comment: 27 pages, 22 figures and 3 tables; project page: https://4dqv.mpi-inf.mpg.de/NeuralClothSim

    ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact

    Full text link
    We present a differentiable dynamics solver that is able to handle frictional contact for rigid and deformable objects within a unified framework. Through a principled mollification of normal and tangential contact forces, our method circumvents the main difficulties inherent to the non-smooth nature of frictional contact. We combine this new contact model with fully-implicit time integration to obtain a robust and efficient dynamics solver that is analytically differentiable. In conjunction with adjoint sensitivity analysis, our formulation enables gradient-based optimization with adaptive trade-offs between simulation accuracy and smoothness of objective function landscapes. We thoroughly analyse our approach on a set of simulation examples involving rigid bodies, visco-elastic materials, and coupled multi-body systems. We furthermore showcase applications of our differentiable simulator to parameter estimation for deformable objects, motion planning for robotic manipulation, trajectory optimization for compliant walking robots, as well as efficient self-supervised learning of control policies.Comment: Moritz Geilinger and David Hahn contributed equally to this wor

    Novel Degrees of Freedom, Constraints, and Stiffness Formulation for Physically Based Animation

    Get PDF
    I identify and improve upon three distinct components of physically simulated systems with the aim of increasing both robustness and efficiency for the application of computer graphics: A) the degrees of freedom of a system; B) the constraints put on that system; C) and the stiffness that derives from force differentiation and in turn enables implicit integration techniques. These three components come up in many implementations of physics-based simulation in computer animation. From a combination of these components, I explore four novel ideas implemented and experimented on over the course of my graduate degree. Eulerian-on-Lagrangian Cloth Simulation resolves a longstanding problem of simulating contact-mediated interaction of cloth and sharp geometric features by exploring a combination of all three of our components. Bilateral Staggered Projections for Joints explores the constrained degrees of freedom of articulated rigid bodies in a reduced state to extend the popular Staggered Projects technique into a novel formulation for rapid evaluation of frictional articulated dynamics. Condensation Jacobian with Adaptivity looks at using reduction methods to improve the efficiency of soft body deformations by allowing larger time step in dynamics simulations. Finally, Ldot: Boosting Deformation Performance with Cholesky Extrapolation explores the inner workings of sparse direct solvers to introduce a Cholesky factorization that is linearly extrapolated in time, which can improve the performance when encapsulated inside an iterative nonlinear solver

    Stable Constrained Dynamics

    Get PDF
    International audienceWe present a unification of the two main approaches to simulate deformable solids, namely elasticity and constraints. Elasticity accurately handles soft to moderately stiff objects, but becomes numerically hard as stiffness increases. Constraints efficiently handle high stiffness, but when integrated in time they can suffer from instabilities in the nullspace directions, generating spurious transverse vibrations when pulling hard on thin inextensible objects or articulated rigid bodies. We show that geometric stiffness, the tensor encoding the change of force directions (as opposed to intensities) in response to a change of positions, is the missing piece between the two approaches. This previously neglected stiffness term is easy to implement and dramatically improves the stability of inextensible objects and articulated chains, without adding artificial bending forces. This allows time step increases up to several orders of magnitude using standard linear solvers
    • …
    corecore