778 research outputs found

    Numerical Boundary Condition Procedures

    Get PDF
    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed

    ASHEE: a compressible, equilibrium-Eulerian model for volcanic ash plumes

    Get PDF
    A new fluid-dynamic model is developed to numerically simulate the non-equilibrium dynamics of polydisperse gas-particle mixtures forming volcanic plumes. Starting from the three-dimensional N-phase Eulerian transport equations for a mixture of gases and solid particles, we adopt an asymptotic expansion strategy to derive a compressible version of the first-order non-equilibrium model, valid for low concentration regimes and small particles Stokes St<0.2St<0.2. When St<0.001St < 0.001 the model reduces to the dusty-gas one. The new model is significantly faster than the Eulerian model while retaining the capability to describe gas-particle non-equilibrium. Direct numerical simulation accurately reproduce the dynamics of isotropic turbulence in subsonic regime. For gas-particle mixtures, it describes the main features of density fluctuations and the preferential concentration of particles by turbulence, verifying the model reliability and suitability for the simulation of high-Reynolds number and high-temperature regimes. On the other hand, Large-Eddy Numerical Simulations of forced plumes are able to reproduce their observed averaged and instantaneous properties. The self-similar radial profile and the development of large-scale structures are reproduced, including the rate of entrainment of atmospheric air. Application to the Large-Eddy Simulation of the injection of the eruptive mixture in a stratified atmosphere describes some of important features of turbulent volcanic plumes, including air entrainment, buoyancy reversal, and maximum plume height. Coarse particles partially decouple from the gas within eddies, modifying the turbulent structure, and preferentially concentrate at the eddy periphery, eventually being lost from the plume margins due to the gravity. By these mechanisms, gas-particle non-equilibrium is able to influence the large-scale behavior of volcanic plumes.Comment: 29 pages, 22 figure

    Analysis and mitigation of numerical dissipation in inviscid and viscid computation of vortex-dominated flows

    Get PDF
    The conservative unsteady Euler equations for the flow relative motion in the moving frame of reference are used to solve for the steady and unsteady flows around sharp-edged delta wings. The resulting equations are solved by using an implicit approximately-factored finite volume scheme. Implicit second-order and explicit second- and fourth-order dissipations are added to the scheme. The boundary conditions are explicitly satisfied. The grid is generated by locally using a modified Joukowski transformation in cross flow planes at the grid chord stations. The computational applications cover a steady flow around a delta wing whose results serve as the initial conditions for the unsteady flow around a pitching delta wing about a large angle of attack. The steady results are compared with the experimental data and the periodic solution is achieved within the third cycle of oscillation

    Influence of large-scale motion on turbulent transport for confined coaxial jets. Volume 2: Navier-Stokes calculations of swirling and nonswirling confined coaxial jets

    Get PDF
    The existence of large scale coherent structures in turbulent shear flows has been well documented. Discrepancies between experimental and computational data suggest a necessity to understand the roles they play in mass and momentum transport. Using conditional sampling and averaging on coincident two-component velocity and concentration velocity experimental data for swirling and nonswirling coaxial jets, triggers for identifying the structures were examined. Concentration fluctuation was found to be an adequate trigger or indicator for the concentration-velocity data, but no suitable detector was located for the two-component velocity data. The large scale structures are found in the region where the largest discrepancies exist between model and experiment. The traditional gradient transport model does not fit in this region as a result of these structures. The large scale motion was found to be responsible for a large percentage of the axial mass transport. The large scale structures were found to convect downstream at approximately the mean velocity of the overall flow in the axial direction. The radial mean velocity of the structures was found to be substantially greater than that of the overall flow

    Hydrodynamic/acoustic splitting approach with flow-acoustic feedback for universal subsonic noise computation

    Get PDF
    A generalized approach to decompose the compressible Navier-Stokes equations into an equivalent set of coupled equations for flow and acoustics is introduced. As a significant extension to standard hydrodynamic/acoustic splitting methods, the approach provides the essential coupling terms, which account for the feedback from the acoustics to the flow. A unique simplified version of the split equation system with feedback is derived that conforms to the compressible Navier-Stokes equations in the subsonic flow regime, where the feedback reduces to one additional term in the flow momentum equation. Subsonic simulations are conducted for flow-acoustic feedback cases using a scale-resolving run-time coupled hierarchical Cartesian mesh solver, which operates with different explicit time step sizes for incompressible flow and acoustics. The first simulation case focuses on the tone of a generic flute. With the major flow-acoustic feedback term included, the simulation yields the tone characteristics in agreement with reference results from K\"uhnelt based on Lattice-Boltzmann simulation. On the contrary, the standard hybrid hydrodynamic/acoustic method with the feedback-term switched off lacks the proper tone. As the second simulation case, a thick plate in a duct is studied at various low Mach numbers around the Parker-beta-mode resonance. The simulations reveal the flow-acoustic feedback mechanism in very good agreement with experimental data of Welsh et al. Simulations and theoretical considerations reveal that the feedback term does not reduce the stable convective flow based time step size of the flow equations.Comment: Submitted to Journal of Computational Physic

    Towards Improved Scale-Resolving Modeling and Simulations of Turbulent Flows

    Get PDF
    Scale-resolving simulations are viewed as powerful means for predicting complex turbulent flows, as often encountered in aeronautical applications. However, since turbulent scales span over a considerable range from the smallest Kolmogorov scales to the largest of equivalence to configuration size, scale-resolving computations are often demanding on computational resources and, furthermore, on the underlying numerical methods used in the simulations. Nonetheless, hybrid RANS (Reynolds-Averaged Navier-Stokes)-LES (Large-Eddy Simulation) techniques are considered computationally accurate and affordable for aeronautical industry applications. This thesis explores and develops numerical methods suitable for hybrid RANS-LES. These methods are implemented in the Computational Fluid Dynamics (CFD) solver M-Edge
    corecore