69 research outputs found

    Developing and Evaluating a Flexible Wireless Microcoil Array Based Integrated Interface for Epidural Cortical Stimulation.

    Get PDF
    Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats\u27 unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5-20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation

    Neuromorphic hardware for somatosensory neuroprostheses

    Get PDF
    In individuals with sensory-motor impairments, missing limb functions can be restored using neuroprosthetic devices that directly interface with the nervous system. However, restoring the natural tactile experience through electrical neural stimulation requires complex encoding strategies. Indeed, they are presently limited in effectively conveying or restoring tactile sensations by bandwidth constraints. Neuromorphic technology, which mimics the natural behavior of neurons and synapses, holds promise for replicating the encoding of natural touch, potentially informing neurostimulation design. In this perspective, we propose that incorporating neuromorphic technologies into neuroprostheses could be an effective approach for developing more natural human-machine interfaces, potentially leading to advancements in device performance, acceptability, and embeddability. We also highlight ongoing challenges and the required actions to facilitate the future integration of these advanced technologies

    Implantable Neural Probes for Brain-Machine Interfaces - Current Developments and Future Prospects

    Get PDF
    A Brain-Machine interface (BMI) allows for direct communication between the brain and machines. Neural probes for recording neural signals are among the essential components of a BMI system. In this report, we review research regarding implantable neural probes and their applications to BMIs. We first discuss conventional neural probes such as the tetrode, Utah array, Michigan probe, and electroencephalography (ECoG), following which we cover advancements in next-generation neural probes. These next-generation probes are associated with improvements in electrical properties, mechanical durability, biocompatibility, and offer a high degree of freedom in practical settings. Specifically, we focus on three key topics: (1) novel implantable neural probes that decrease the level of invasiveness without sacrificing performance, (2) multi-modal neural probes that measure both electrical and optical signals, (3) and neural probes developed using advanced materials. Because safety and precision are critical for practical applications of BMI systems, future studies should aim to enhance these properties when developing next-generation neural probes

    Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation.

    Get PDF
    After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery

    ์†Œํ˜•๋™๋ฌผ์˜ ๋‡Œ์‹ ๊ฒฝ ์ž๊ทน์„ ์œ„ํ•œ ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€,2020. 2. ๊น€์„ฑ์ค€.In this study, a fully implantable neural stimulator that is designed to stimulate the brain in the small animal is described. Electrical stimulation of the small animal is applicable to pre-clinical study, and behavior study for neuroscience research, etc. Especially, behavior study of the freely moving animal is useful to observe the modulation of sensory and motor functions by the stimulation. It involves conditioning animal's movement response through directional neural stimulation on the region of interest. The main technique that enables such applications is the development of an implantable neural stimulator. Implantable neural stimulator is used to modulate the behavior of the animal, while it ensures the free movement of the animals. Therefore, stable operation in vivo and device size are important issues in the design of implantable neural stimulators. Conventional neural stimulators for brain stimulation of small animal are comprised of electrodes implanted in the brain and a pulse generation circuit mounted on the back of the animal. The electrical stimulation generated from the circuit is conveyed to the target region by the electrodes wire-connected with the circuit. The devices are powered by a large battery, and controlled by a microcontroller unit. While it represents a simple approach, it is subject to various potential risks including short operation time, infection at the wound, mechanical failure of the device, and animals being hindered to move naturally, etc. A neural stimulator that is miniaturized, fully implantable, low-powered, and capable of wireless communication is required. In this dissertation, a fully implantable stimulator with remote controllability, compact size, and minimal power consumption is suggested for freely moving animal application. The stimulator consists of modular units of surface-type and depth-type arrays for accessing target brain area, package for accommodating the stimulating electronics all of which are assembled after independent fabrication and implantation using customized flat cables and connectors. The electronics in the package contains ZigBee telemetry for low-power wireless communication, inductive link for recharging lithium battery, and an ASIC that generates biphasic pulse for neural stimulation. A dual-mode power-saving scheme with a duty cycling was applied to minimize the power consumption. All modules were packaged using liquid crystal polymer (LCP) to avoid any chemical reaction after implantation. To evaluate the fabricated stimulator, wireless operation test was conducted. Signal-to-Noise Ratio (SNR) of the ZigBee telemetry were measured, and its communication range and data streaming capacity were tested. The amount of power delivered during the charging session depending on the coil distance was measured. After the evaluation of the device functionality, the stimulator was implanted into rats to train the animals to turn to the left (or right) following a directional cue applied to the barrel cortex. Functionality of the device was also demonstrated in a three-dimensional maze structure, by guiding the rats to navigate better in the maze. Finally, several aspects of the fabricated device were discussed further.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์†Œํ˜• ๋™๋ฌผ์˜ ๋‘๋‡Œ๋ฅผ ์ž๊ทนํ•˜๊ธฐ ์œ„ํ•œ ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๊ฐ€ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์†Œํ˜• ๋™๋ฌผ์˜ ์ „๊ธฐ์ž๊ทน์€ ์ „์ž„์ƒ ์—ฐ๊ตฌ, ์‹ ๊ฒฝ๊ณผํ•™ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ํ–‰๋™์—ฐ๊ตฌ ๋“ฑ์— ํ™œ์šฉ๋œ๋‹ค. ํŠนํžˆ, ์ž์œ ๋กญ๊ฒŒ ์›€์ง์ด๋Š” ๋™๋ฌผ์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ ํ–‰๋™ ์—ฐ๊ตฌ๋Š” ์ž๊ทน์— ์˜ํ•œ ๊ฐ๊ฐ ๋ฐ ์šด๋™ ๊ธฐ๋Šฅ์˜ ์กฐ์ ˆ์„ ๊ด€์ฐฐํ•˜๋Š” ๋ฐ ์œ ์šฉํ•˜๊ฒŒ ํ™œ์šฉ๋œ๋‹ค. ํ–‰๋™ ์—ฐ๊ตฌ๋Š” ๋‘๋‡Œ์˜ ํŠน์ • ๊ด€์‹ฌ ์˜์—ญ์„ ์ง์ ‘์ ์œผ๋กœ ์ž๊ทนํ•˜์—ฌ ๋™๋ฌผ์˜ ํ–‰๋™๋ฐ˜์‘์„ ์กฐ๊ฑดํ™”ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ˆ˜ํ–‰๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ์šฉ์„ ๊ฐ€๋Šฅ์ผ€ ํ•˜๋Š” ํ•ต์‹ฌ๊ธฐ์ˆ ์€ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ์˜ ๊ฐœ๋ฐœ์ด๋‹ค. ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ๋™๋ฌผ์˜ ์›€์ง์ž„์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š์œผ๋ฉด์„œ๋„ ๊ทธ ํ–‰๋™์„ ์กฐ์ ˆํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋™๋ฌผ ๋‚ด์—์„œ์˜ ์•ˆ์ •์ ์ธ ๋™์ž‘๊ณผ ์žฅ์น˜์˜ ํฌ๊ธฐ๊ฐ€ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋ฅผ ์„ค๊ณ„ํ•จ์— ์žˆ์–ด ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๋‹ค. ๊ธฐ์กด์˜ ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ๋‘๋‡Œ์— ์ด์‹๋˜๋Š” ์ „๊ทน ๋ถ€๋ถ„๊ณผ, ๋™๋ฌผ์˜ ๋“ฑ ๋ถ€๋ถ„์— ์œ„์น˜ํ•œ ํšŒ๋กœ๋ถ€๋ถ„์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ํšŒ๋กœ์—์„œ ์ƒ์‚ฐ๋œ ์ „๊ธฐ์ž๊ทน์€ ํšŒ๋กœ์™€ ์ „์„ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ ์ „๊ทน์„ ํ†ตํ•ด ๋ชฉํ‘œ ์ง€์ ์œผ๋กœ ์ „๋‹ฌ๋œ๋‹ค. ์žฅ์น˜๋Š” ๋ฐฐํ„ฐ๋ฆฌ์— ์˜ํ•ด ๊ตฌ๋™๋˜๋ฉฐ, ๋‚ด์žฅ๋œ ๋งˆ์ดํฌ๋กœ ์ปจํŠธ๋กค๋Ÿฌ์— ์˜ํ•ด ์ œ์–ด๋œ๋‹ค. ์ด๋Š” ์‰ฝ๊ณ  ๊ฐ„๋‹จํ•œ ์ ‘๊ทผ๋ฐฉ์‹์ด์ง€๋งŒ, ์งง์€ ๋™์ž‘์‹œ๊ฐ„, ์ด์‹๋ถ€์œ„์˜ ๊ฐ์—ผ์ด๋‚˜ ์žฅ์น˜์˜ ๊ธฐ๊ณ„์  ๊ฒฐํ•จ, ๊ทธ๋ฆฌ๊ณ  ๋™๋ฌผ์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„ ๋ฐฉํ•ด ๋“ฑ ์—ฌ๋Ÿฌ ๋ฌธ์ œ์ ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์˜ ๊ฐœ์„ ์„ ์œ„ํ•ด ๋ฌด์„ ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•˜๊ณ , ์ €์ „๋ ฅ, ์†Œํ˜•ํ™”๋œ ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ์˜ ์„ค๊ณ„๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž์œ ๋กญ๊ฒŒ ์›€์ง์ด๋Š” ๋™๋ฌผ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์›๊ฒฉ ์ œ์–ด๊ฐ€ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํฌ๊ธฐ๊ฐ€ ์ž‘๊ณ , ์†Œ๋ชจ์ „๋ ฅ์ด ์ตœ์†Œํ™”๋œ ์™„์ „์ด์‹ํ˜• ์ž๊ทน๊ธฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์„ค๊ณ„๋œ ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ๋‘๋‡Œ ์˜์—ญ์— ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋Š” ํ‘œ๋ฉดํ˜• ์ „๊ทน๊ณผ ํƒ์นจํ˜• ์ „๊ทน, ๊ทธ๋ฆฌ๊ณ  ์ž๊ทน ํŽ„์Šค ์ƒ์„ฑ ํšŒ๋กœ๋ฅผ ํฌํ•จํ•˜๋Š” ํŒจํ‚ค์ง€ ๋“ฑ์˜ ๋ชจ๋“ˆ๋“ค๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๊ฐ๊ฐ์˜ ๋ชจ๋“ˆ์€ ๋…๋ฆฝ์ ์œผ๋กœ ์ œ์ž‘๋˜์–ด ๋™๋ฌผ์— ์ด์‹๋œ ๋’ค ์ผ€์ด๋ธ”๊ณผ ์ปค๋„ฅํ„ฐ๋กœ ์—ฐ๊ฒฐ๋œ๋‹ค. ํŒจํ‚ค์ง€ ๋‚ด๋ถ€์˜ ํšŒ๋กœ๋Š” ์ €์ „๋ ฅ ๋ฌด์„ ํ†ต์‹ ์„ ์œ„ํ•œ ์ง€๊ทธ๋น„ ํŠธ๋žœ์‹œ๋ฒ„, ๋ฆฌํŠฌ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์žฌ์ถฉ์ „์„ ์œ„ํ•œ ์ธ๋•ํ‹ฐ๋ธŒ ๋งํฌ, ๊ทธ๋ฆฌ๊ณ  ์‹ ๊ฒฝ์ž๊ทน์„ ์œ„ํ•œ ์ด์ƒ์„ฑ ์ž๊ทนํŒŒํ˜•์„ ์ƒ์„ฑํ•˜๋Š” ASIC์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ „๋ ฅ ์ ˆ๊ฐ์„ ์œ„ํ•ด ๋‘ ๊ฐœ์˜ ๋ชจ๋“œ๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ๋ฅ ์„ ์กฐ์ ˆํ•˜๋Š” ๋ฐฉ์‹์ด ์žฅ์น˜์— ์ ์šฉ๋œ๋‹ค. ๋ชจ๋“  ๋ชจ๋“ˆ๋“ค์€ ์ด์‹ ํ›„์˜ ์ƒ๋ฌผํ•™์ , ํ™”ํ•™์  ์•ˆ์ •์„ฑ์„ ์œ„ํ•ด ์•ก์ • ํด๋ฆฌ๋จธ๋กœ ํŒจํ‚ค์ง•๋˜์—ˆ๋‹ค. ์ œ์ž‘๋œ ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋ฌด์„  ๋™์ž‘ ํ…Œ์ŠคํŠธ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ง€๊ทธ๋น„ ํ†ต์‹ ์˜ ์‹ ํ˜ธ ๋Œ€ ์žก์Œ๋น„๊ฐ€ ์ธก์ •๋˜์—ˆ์œผ๋ฉฐ, ํ•ด๋‹น ํ†ต์‹ ์˜ ๋™์ž‘๊ฑฐ๋ฆฌ ๋ฐ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆฌ๋ฐ ์„ฑ๋Šฅ์ด ๊ฒ€์‚ฌ๋˜์—ˆ๊ณ , ์žฅ์น˜์˜ ์ถฉ์ „์ด ์ˆ˜ํ–‰๋  ๋•Œ ์ฝ”์ผ๊ฐ„์˜ ๊ฑฐ๋ฆฌ์— ๋”ฐ๋ผ ์ „์†ก๋˜๋Š” ์ „๋ ฅ์˜ ํฌ๊ธฐ๊ฐ€ ์ธก์ •๋˜์—ˆ๋‹ค. ์žฅ์น˜์˜ ํ‰๊ฐ€ ์ดํ›„, ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ์ฅ์— ์ด์‹๋˜์—ˆ์œผ๋ฉฐ, ํ•ด๋‹น ๋™๋ฌผ์€ ์ด์‹๋œ ์žฅ์น˜๋ฅผ ์ด์šฉํ•ด ๋ฐฉํ–ฅ ์‹ ํ˜ธ์— ๋”ฐ๋ผ ์ขŒ์šฐ๋กœ ์ด๋™ํ•˜๋„๋ก ํ›ˆ๋ จ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, 3์ฐจ์› ๋ฏธ๋กœ ๊ตฌ์กฐ์—์„œ ์ฅ์˜ ์ด๋™๋ฐฉํ–ฅ์„ ์œ ๋„ํ•˜๋Š” ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์žฅ์น˜์˜ ๊ธฐ๋Šฅ์„ฑ์„ ์ถ”๊ฐ€์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ œ์ž‘๋œ ์žฅ์น˜์˜ ํŠน์ง•์ด ์—ฌ๋Ÿฌ ์ธก๋ฉด์—์„œ ์‹ฌ์ธต์ ์œผ๋กœ ๋…ผ์˜๋˜์—ˆ๋‹ค.Chapter 1 : Introduction 1 1.1. Neural Interface 2 1.1.1. Concept 2 1.1.2. Major Approaches 3 1.2. Neural Stimulator for Animal Brain Stimulation 5 1.2.1. Concept 5 1.2.2. Neural Stimulator for Freely Moving Small Animal 7 1.3. Suggested Approaches 8 1.3.1. Wireless Communication 8 1.3.2. Power Management 9 1.3.2.1. Wireless Power Transmission 10 1.3.2.2. Energy Harvesting 11 1.3.3. Full implantation 14 1.3.3.1. Polymer Packaging 14 1.3.3.2. Modular Configuration 16 1.4. Objectives of This Dissertation 16 Chapter 2 : Methods 18 2.1. Overview 19 2.1.1. Circuit Description 20 2.1.1.1. Pulse Generator ASIC 21 2.1.1.2. ZigBee Transceiver 23 2.1.1.3. Inductive Link 24 2.1.1.4. Energy Harvester 25 2.1.1.5. Surrounding Circuitries 26 2.1.2. Software Description 27 2.2. Antenna Design 29 2.2.1. RF Antenna 30 2.2.1.1. Design of Monopole Antenna 31 2.2.1.2. FEM Simulation 31 2.2.2. Inductive Link 36 2.2.2.1. Design of Coil Antenna 36 2.2.2.2. FEM Simulation 38 2.3. Device Fabrication 41 2.3.1. Circuit Assembly 41 2.3.2. Packaging 42 2.3.3. Electrode, Feedthrough, Cable, and Connector 43 2.4. Evaluations 45 2.4.1. Wireless Operation Test 46 2.4.1.1. Signal-to-Noise Ratio (SNR) Measurement 46 2.4.1.2. Communication Range Test 47 2.4.1.3. Device Operation Monitoring Test 48 2.4.2. Wireless Power Transmission 49 2.4.3. Electrochemical Measurements In Vitro 50 2.4.4. Animal Testing In Vivo 52 Chapter 3 : Results 57 3.1. Fabricated System 58 3.2. Wireless Operation Test 59 3.2.1. Signal-to-Noise Ratio Measurement 59 3.2.2. Communication Range Test 61 3.2.3. Device Operation Monitoring Test 62 3.3. Wireless Power Transmission 64 3.4. Electrochemical Measurements In Vitro 65 3.5. Animal Testing In Vivo 67 Chapter 4 : Discussion 73 4.1. Comparison with Conventional Devices 74 4.2. Safety of Device Operation 76 4.2.1. Safe Electrical Stimulation 76 4.2.2. Safe Wireless Power Transmission 80 4.3. Potential Applications 84 4.4. Opportunities for Further Improvements 86 4.4.1. Weight and Size 86 4.4.2. Long-Term Reliability 93 Chapter 5 : Conclusion 96 Reference 98 Appendix - Liquid Crystal Polymer (LCP) -Based Spinal Cord Stimulator 107 ๊ตญ๋ฌธ ์ดˆ๋ก 138 ๊ฐ์‚ฌ์˜ ๊ธ€ 140Docto

    The rise of flexible electronics in neuroscience, from materials selection to in vitro and in vivo applications

    Get PDF
    Neuroscience deals with one of the most complicate system we can study: the brain. The huge amount of connections among the cells and the different phenomena occurring at different scale give rise to a continuous flow of data that have to be collected, analyzed and interpreted. Neuroscientists try to interrogate this complexity to find basic principles underlying brain electrochemical signalling and human/animal behaviour to disclose the mechanisms that trigger neurodegenerative diseases and to understand how restoring damaged brain circuits. The main tool to perform these tasks is a neural interface, a system able to interact with brain tissue at different levels to provide a uni/bidirectional communication path. Recently, breakthroughs coming from various disciplines have been combined to enforce features and potentialities of neural interfaces. Among the different findings, flexible electronics is playing a pivotal role in revolutionizing neural interfaces. In this work, we review the most recent advances in the fabrication of neural interfaces based on flexible electronics. We define challenges and issues to be solved for the application of such platforms and we discuss the different parts of the system regarding improvements in materials selection and breakthrough in applications both for in vitro and in vivo tests

    Toward biomaterial-based implantable photonic devices

    Get PDF
    Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs) and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies. Keywords: biomaterials; biocompatible; biodegradable; optics; photonicsUnited States. Department of Defense (Award FA9550-13-1-0068)National Institutes of Health (U.S.) (Award P41-EB015903)National Institutes of Health (U.S.) (Award R01-CA192878)National Science Foundation (U.S.) (Award CBET-1264356)National Science Foundation (U.S.) (Award ECCS-1505569

    Bi-directional Transcutaneous Wireless Communication System for Intracortical Visual Prostheses

    Get PDF
    • โ€ฆ
    corecore