779 research outputs found

    Research Trends and Outlooks in Assembly Line Balancing Problems

    Get PDF
    This paper presents the findings from the survey of articles published on the assembly line balancing problems (ALBPs) during 2014-2018. Before proceeding a comprehensive literature review, the ineffectiveness of the previous ALBP classification structures is discussed and a new classification scheme based on the layout configurations of assembly lines is subsequently proposed. The research trend in each layout of assembly lines is highlighted through the graphical presentations. The challenges in the ALBPs are also pinpointed as a technical guideline for future research works

    Extending the solid step fixed-charge transportation problem to consider two-stage networks and multi-item shipments

    Get PDF
    This paper develops a new mathematical model for a capacitated solid step fixed-charge transportation problem. The problem is formulated as a two-stage transportation network and considers the option of shipping multiple items from the plants to the distribution centers (DC) and afterwards from DCs to customers. In order to tackle such an NP-hard problem, we propose two meta-heuristic algorithms; namely, Simulated Annealing (SA) and Imperialist Competitive Algorithm (ICA). Contrary to the previous studies, new neighborhood strategies maintaining the feasibility of the problem are developed. Additionally, the Taguchi method is used to tune the parameters of the algorithms. In order to validate and evaluate the performances of the model and algorithms, the results of the proposed SA and ICA are compared. The computational results show that the proposed algorithms provide relatively good solutions in a reasonable amount of time. Furthermore, the related comparison reveals that the ICA generates superior solutions compared to the ones obtained by the SA algorithm

    The project portfolio selection and scheduling problem: mathematical model and algorithms

    Get PDF
    This paper investigates the problem of selecting and scheduling a set of projects among available projects. Each project consists of several tasks and to perform each one some resource is required. The objective is to maximize total benefit. The paper constructs a mathematical formulation in form of mixed integer linear programming model. Three effective metaheuristics in form of the imperialist competitive algorithm, simulated annealing and genetic algorithm are developed to solve such a hard problem. The proposed algorithms employ advanced operators. The performance of the proposed algorithms is numerically evaluated. The results show the high performance of the imperialist competitive algorithm outperforms the other algorithms

    Energy Efficient Policies, Scheduling, and Design for Sustainable Manufacturing Systems

    Get PDF
    Climate mitigation, more stringent regulations, rising energy costs, and sustainable manufacturing are pushing researchers to focus on energy efficiency, energy flexibility, and implementation of renewable energy sources in manufacturing systems. This thesis aims to analyze the main works proposed regarding these hot topics, and to fill the gaps in the literature. First, a detailed literature review is proposed. Works regarding energy efficiency in different manufacturing levels, in the assembly line, energy saving policies, and the implementation of renewable energy sources are analyzed. Then, trying to fill the gaps in the literature, different topics are analyzed more in depth. In the single machine context, a mathematical model aiming to align the manufacturing power required to a renewable energy supply in order to obtain the maximum profit is developed. The model is applied to a single work center powered by the electric grid and by a photovoltaic system; afterwards, energy storage is also added to the power system. Analyzing the job shop context, switch off policies implementing workload approach and scheduling considering variable speed of the machines and power constraints are proposed. The direct and indirect workloads of the machines are considered to support the switch on/off decisions. A simulation model is developed to test the proposed policies compared to others presented in the literature. Regarding the job shop scheduling, a fixed and variable power constraints are considered, assuming the minimization of the makespan as the objective function. Studying the factory level, a mathematical model to design a flow line considering the possibility of using switch-off policies is developed. The design model for production lines includes a targeted imbalance among the workstations to allow for defined idle time. Finally, the main findings, results, and the future directions and challenges are presented

    A bi-objective robust inspection planning model in a multi-stage serial production system

    Get PDF
    International audienceIn this paper, a bi-objective mixed-integer linear programming (BOMILP) model for planning of an inspection process used to detect nonconforming products and malfunctioning processors in a multi-stage serial production system is presented. The model involves two inter-related decisions: 1) which quality characteristics need what kind of inspections (i.e., which-what decision) and 2) when the inspection of these characteristics should be performed (i.e., when decision). These decisions require a trade-off between the cost of manufacturing (i.e., production, inspection and scrap costs) and the customer satisfaction. Due to inevitable variations in the manufacturing systems, a global robust BOMILP (RBOMILP) is developed to tackle the inherent uncertainty of the concerned parameters (i.e., production and inspection times, errors type I and II, misadjustment and dispersion of the process). In order to optimally solve the presented RBOMILP model, a meta-heuristic algorithm, namely differential evolution (DE) algorithm, is combined with the Taguchi and Monte Carlo methods. The proposed model and solution algorithm are validated through a real industrial case from a leading automotive industry in France

    Smart Frequency Control using Coordinated RFB and TCPS based on Firefly Algorithm

    Get PDF
    The frequency stability enhancement of a power system is proposed in this paper. To enhance the frequency stability, redox flow batteries (RFB) and the thyristor controlled phase shifter are used. Moreover, to get a better performance, the parameter of RFB and TCSC are optimized by the firefly algorithm (FA). Two area load frequency control plant is used as a test system. Time domain simulation is used to assess the performance of the proposed method (adding RFB and TCPS and optimized using FA). From the simulation results, it is found that by installing RFB and TCSC based on FA in the system, the frequency performance can be maintained above the nadir when perturbation emerges

    Reduction of carbon emission and total late work criterion in job shop scheduling by applying a multi-objective imperialist competitive algorithm

    Get PDF
    New environmental regulations have driven companies to adopt low-carbon manufacturing. This research is aimed at considering carbon dioxide in the operational decision level where limited studies can be found, especially in the scheduling area. In particular, the purpose of this research is to simultaneously minimize carbon emission and total late work criterion as sustainability-based and classical-based objective functions, respectively, in the multiobjective job shop scheduling environment. In order to solve the presented problem more effectively, a new multiobjective imperialist competitive algorithm imitating the behavior of imperialistic competition is proposed to obtain a set of non-dominated schedules. In this work, a three-fold scientific contribution can be observed in the problem and solution method, that are: (1) integrating carbon dioxide into the operational decision level of job shop scheduling, (2) considering total late work criterion in multi-objective job shop scheduling, and (3) proposing a new multi-objective imperialist competitive algorithm for solving the extended multi-objective optimization problem. The elements of the proposed algorithm are elucidated and forty three small and large sized extended benchmarked data sets are solved by the algorithm. Numerical results are compared with two well-known and most representative metaheuristic approaches, which are multi-objective particle swarm optimization and non-dominated sorting genetic algorithm II, in order to evaluate the performance of the proposed algorithm. The obtained results reveal the effectiveness and efficiency of the proposed multi-objective imperialist competitive algorithm in finding high quality non-dominated schedules as compared to the other metaheuristic approache

    Mixed-model Sequencing with Stochastic Failures: A Case Study for Automobile Industry

    Full text link
    In the automotive industry, the sequence of vehicles to be produced is determined ahead of the production day. However, there are some vehicles, failed vehicles, that cannot be produced due to some reasons such as material shortage or paint failure. These vehicles are pulled out of the sequence, and the vehicles in the succeeding positions are moved forward, potentially resulting in challenges for logistics or other scheduling concerns. This paper proposes a two-stage stochastic program for the mixed-model sequencing (MMS) problem with stochastic product failures, and provides improvements to the second-stage problem. To tackle the exponential number of scenarios, we employ the sample average approximation approach and two solution methodologies. On one hand, we develop an L-shaped decomposition-based algorithm, where the computational experiments show its superiority over solving the deterministic equivalent formulation with an off-the-shelf solver. Moreover, we provide a tabu search algorithm in addition to a greedy heuristic to tackle case study instances inspired by our car manufacturer partner. Numerical experiments show that the proposed solution methodologies generate high quality solutions by utilizing a sample of scenarios. Particularly, a robust sequence that is generated by considering car failures can decrease the expected work overload by more than 20\% for both small- and large-sized instances.Comment: 30 pages, 9 figure
    corecore