1,242 research outputs found

    Developing an embodied gait on a compliant quadrupedal robot

    Get PDF
    Incorporating the body dynamics of compliant robots into their controller architectures can drastically reduce the complexity of locomotion control. An extreme version of this embodied control principle was demonstrated in highly compliant tensegrity robots, for which stable gait generation was achieved by using only optimized linear feedback from the robot's sensors to its actuators. The morphology of quadrupedal robots has previously been used for sensing and for control of a compliant spine, but never for gait generation. In this paper, we successfully apply embodied control to the compliant, quadrupedal Oncilla robot. As initial experiments indicated that mere linear feedback does not suffice, we explore the minimal requirements for robust gait generation in terms of memory and nonlinear complexity. Our results show that a memory-less feedback controller can generate a stable trot by learning the desired nonlinear relation between the input and the output signals. We believe this method can provide a very useful tool for transferring knowledge from open loop to closed loop control on compliant robots

    A review on design of upper limb exoskeletons

    Get PDF

    A novel hand exoskeleton with series elastic actuation for modulated torque transfer

    Get PDF
    Abstract Among wearable robotic devices, hand exoskeletons present an important and persistent challenge due to the compact dimensions and kinematic complexity of the human hand. To address these challenges, this paper introduces HandeXos-Beta (HX-β), a novel index finger-thumb exoskeleton for hand rehabilitation. The HX-β system features an innovative kinematic architecture that allows independent actuation of thumb flexion/extension and circumduction (opposition), thus enabling a variety of naturalistic and functional grip configurations. Furthermore, HX-β features a novel series-elastic actuators (SEA) architecture that directly measures externally transferred torque in real-time, and thus enables both position- and torque-controlled modes of operation, allowing implementation of both robot-in-charge and user-in-charge exercise paradigms. Finally, HX-β's adjustable orthosis, passive degrees of freedom, and under-actuated control scheme allow for optimal comfort, robot-user joint alignment, and flexible actuation for users of various hand sizes. In addition to the mechatronic design and resulting functional capabilities of HX-β, this work presents a series of physical performance characterizations, including the position- and torque-control system performance, frequency response, end effector force, and output impedance. By each measure, the HX-β exhibited performance comparable or superior to previously reported hand exoskeletons, including position and torque step response times on the order of 0.3 s, −3 dB cut-off frequencies ranging from approximately 2.5 to 4 Hz, and fingertip output forces on the order of 4 N. During use by a healthy subject in torque-controlled transparent mode, the HX-β orthosis joints exhibited appropriately low output impedance, ranging from 0.42 to −0.042 Nm/rad at 1 Hz, over a range of functional grasps performed at real-life speeds. This combination of lab bench characterizations and functional evaluation provides a comprehensive verification of the design and performance of the HandeXos Beta exoskeleton, and its suitability for clinical application in hand rehabilitation

    Novel Design and Implementation of a Knee Exoskeleton for Gait Rehabilitation with Impedance Control Strategy

    Get PDF
    This paper presents a novel cable-driven robotic joint for a gait exoskeleton robot. We discussed in detail a lightweight, low inertia, and highly back-drivable, 1-DOF tension amplification mechanism based on a pulley system and block-and-tackle technique. The exoskeleton is controlled using an impedance controller under the active-assistive and resistive approaches. Four experiments were conducted to evaluate the proposed exoskeleton’s safety and controller performance: mechanical transparency analysis, active-assistive trajectory tracking, resistance of trajectory tracking, and gait rehabilitation. The exoskeleton demonstrated high transparency with the root mean square (RMS) torque of 0.457 Nm under no-load condition, suggesting that the mechanism is highly back-drivable, has a low moment of inertia, and is mechanically safe to operate. The active-assistive trajectory tracking experiment indicated that the output torque was generated under assist-as-needed approach, as the average robotic-assistance torque was lowered by more than 73% when the user provided assistance force to complete the task on their own.  Additionally, the resistance experiment revealed the feasibility of employing the exoskeleton to strengthen muscles with adjustable resistive torque from 0.94 Nm and 2.25 Nm. Finally, the result of gait rehabilitation experiment demonstrated that the robot was able to provide adequate torque to assist users in completing their gait cycle without causing any negative effects during or after the experiment

    Novel Actuation Methods for High Force Haptics

    Get PDF

    Design, implementation, and evaluation of a variable stiffness transradial hand prosthesis

    Get PDF
    We present the design, implementation, and experimental evaluation of a low-cost, customizable, easy-to-use transradial hand prosthesis capable of adapting its compliance. Variable stiffness actuation (VSA) of the prosthesis is based on antagonistically arranged tendons coupled to nonlinear springs driven through a Bowden cable based power transmission. Bowden cable based antagonistic VSA can, not only regulate the stiffness and the position of the prosthetic hand but also enables a light-weight and low-cost design, by the opportunistic placement of motors, batteries, and controllers on any convenient location on the human body, while nonlinear springs are conveniently integrated inside the forearm. The transradial hand prosthesis also features tendon driven underactuated compliant fingers that allow natural adaption of the hand shape to wrap around a wide variety of object geometries, while the modulation of the stiffness of their drive tendons enables the prosthesis to perform various tasks with high dexterity. The compliant fingers of the prosthesis add inherent robustness and flexibility, even under impacts. The control of the variable stiffness transradial hand prosthesis is achieved by an sEMG based natural human-machine interface
    • …
    corecore