1,119 research outputs found

    Trajectory Optimization Through Contacts and Automatic Gait Discovery for Quadrupeds

    Full text link
    In this work we present a trajectory Optimization framework for whole-body motion planning through contacts. We demonstrate how the proposed approach can be applied to automatically discover different gaits and dynamic motions on a quadruped robot. In contrast to most previous methods, we do not pre-specify contact switches, timings, points or gait patterns, but they are a direct outcome of the optimization. Furthermore, we optimize over the entire dynamics of the robot, which enables the optimizer to fully leverage the capabilities of the robot. To illustrate the spectrum of achievable motions, here we show eight different tasks, which would require very different control structures when solved with state-of-the-art methods. Using our trajectory Optimization approach, we are solving each task with a simple, high level cost function and without any changes in the control structure. Furthermore, we fully integrated our approach with the robot's control and estimation framework such that optimization can be run online. By demonstrating a rough manipulation task with multiple dynamic contact switches, we exemplarily show how optimized trajectories and control inputs can be directly applied to hardware.Comment: Video: https://youtu.be/sILuqJBsyK

    Sequential Motion Planning for Bipedal Somersault via Flywheel SLIP and Momentum Transmission with Task Space Control

    Get PDF
    In this paper, we present a sequential motion planning and control method for generating somersaults on bipedal robots. The somersault (backflip or frontflip) is considered as a coupling between an axile hopping motion and a rotational motion about the center of mass of the robot; these are encoded by a hopping Spring-loaded Inverted Pendulum (SLIP) model and the rotation of a Flywheel, respectively. We thus present the Flywheel SLIP model for generating the desired motion on the ground phase. In the flight phase, we present a momentum transmission method to adjust the orientation of the lower body based on the conservation of the centroidal momentum. The generated motion plans are realized on the full-dimensional robot via momentum-included task space control. Finally, the proposed method is implemented on a modified version of the bipedal robot Cassie in simulation wherein multiple somersault motions are generated

    Real-Time Motion Planning of Legged Robots: A Model Predictive Control Approach

    Full text link
    We introduce a real-time, constrained, nonlinear Model Predictive Control for the motion planning of legged robots. The proposed approach uses a constrained optimal control algorithm known as SLQ. We improve the efficiency of this algorithm by introducing a multi-processing scheme for estimating value function in its backward pass. This pass has been often calculated as a single process. This parallel SLQ algorithm can optimize longer time horizons without proportional increase in its computation time. Thus, our MPC algorithm can generate optimized trajectories for the next few phases of the motion within only a few milliseconds. This outperforms the state of the art by at least one order of magnitude. The performance of the approach is validated on a quadruped robot for generating dynamic gaits such as trotting.Comment: 8 page
    corecore