2,028 research outputs found

    Simulating water-entry/exit problems using Eulerian-Lagrangian and fully-Eulerian fictitious domain methods within the open-source IBAMR library

    Full text link
    In this paper we employ two implementations of the fictitious domain (FD) method to simulate water-entry and water-exit problems and demonstrate their ability to simulate practical marine engineering problems. In FD methods, the fluid momentum equation is extended within the solid domain using an additional body force that constrains the structure velocity to be that of a rigid body. Using this formulation, a single set of equations is solved over the entire computational domain. The constraint force is calculated in two distinct ways: one using an Eulerian-Lagrangian framework of the immersed boundary (IB) method and another using a fully-Eulerian approach of the Brinkman penalization (BP) method. Both FSI strategies use the same multiphase flow algorithm that solves the discrete incompressible Navier-Stokes system in conservative form. A consistent transport scheme is employed to advect mass and momentum in the domain, which ensures numerical stability of high density ratio multiphase flows involved in practical marine engineering applications. Example cases of a free falling wedge (straight and inclined) and cylinder are simulated, and the numerical results are compared against benchmark cases in literature.Comment: The current paper builds on arXiv:1901.07892 and re-explains some parts of it for the reader's convenienc

    Cavitation Induction by Projectile Impacting on a Water Jet

    Get PDF
    The present paper focuses on the simulation of the high-velocity impact of a projectile impacting on a water-jet, causing the onset, development and collapse of cavitation. The simulation of the fluid motion is carried out using an explicit, compressible, density-based solver developed by the authors using the OpenFOAM library. It employs a barotropic two-phase flow model that simulates the phase-change due to cavitation and considers the co-existence of non-condensable and immiscible air. The projectile is considered to be rigid while its motion through the computational domain is modelled through a direct-forcing Immersed Boundary Method. Model validation is performed against the experiments of Field et al. [Field, J., Camus, J. J., Tinguely, M., Obreschkow, D., Farhat, M., 2012. Cavitation in impacted drops and jets and the effect on erosion damage thresholds. Wear 290–291, 154–160. doi:10.1016/j.wear.2012.03.006. URL http://www.sciencedirect.com/science/article/pii/S0043164812000968 ], who visualised cavity formation and shock propagation in liquid impacts at high velocities. Simulations unveil the shock structures and capture the high-speed jetting forming at the impact location, in addition to the subsequent cavitation induction and vapour formation due to refraction waves. Moreover, model predictions provide quantitative information and a better insight on the flow physics that has not been identified from the reported experimental data, such as shock-wave propagation, vapour formation quantity and induced pressures. Furthermore, evidence of the Richtmyer-Meshkov instability developing on the liquid-air interface are predicted when sufficient dense grid resolution is utilised

    Inertial Coupling Method for particles in an incompressible fluctuating fluid

    Full text link
    We develop an inertial coupling method for modeling the dynamics of point-like 'blob' particles immersed in an incompressible fluid, generalizing previous work for compressible fluids. The coupling consistently includes excess (positive or negative) inertia of the particles relative to the displaced fluid, and accounts for thermal fluctuations in the fluid momentum equation. The coupling between the fluid and the blob is based on a no-slip constraint equating the particle velocity with the local average of the fluid velocity, and conserves momentum and energy. We demonstrate that the formulation obeys a fluctuation-dissipation balance, owing to the non-dissipative nature of the no-slip coupling. We develop a spatio-temporal discretization that preserves, as best as possible, these properties of the continuum formulation. In the spatial discretization, the local averaging and spreading operations are accomplished using compact kernels commonly used in immersed boundary methods. We find that the special properties of these kernels make the discrete blob a particle with surprisingly physically-consistent volume, mass, and hydrodynamic properties. We develop a second-order semi-implicit temporal integrator that maintains discrete fluctuation-dissipation balance, and is not limited in stability by viscosity. Furthermore, the temporal scheme requires only constant-coefficient Poisson and Helmholtz linear solvers, enabling a very efficient and simple FFT-based implementation on GPUs. We numerically investigate the performance of the method on several standard test problems...Comment: Contains a number of corrections and an additional Figure 7 (and associated discussion) relative to published versio

    High fidelity fluid-structure turbulence modeling using an immersed-body method

    Get PDF
    There is an increasing need for turbulence models with fluid-structure interaction (FSI) in many industrial and environmental high Reynolds number flows. Since the complicated structure boundaries move in turbulent flows, it is quite challenging to numerically apply boundary conditions on these moving fluid-structure interfaces. To achieve accurate and reliable results from numerical FSI simulations in turbulent flows, a high fidelity fluid-structure turbulence model is developed using an immersed-body method in this thesis. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model via a novel thin shell mesh surrounding solid surfaces. The FSI turbulence model presented has four novelties. Firstly, an unsteady Reynolds-averaged Navier-Stokes (URANS) k−ε turbulence model is coupled with an immersed-body method to model FSI by using this thin shell mesh. Secondly, to reduce the computational cost, a log-law wall function is used within this thin shell to resolve the flow near the boundary layer. Thirdly, in order to improve the accuracy of the wall function, a novel shell mesh external-surface intersection approach is introduced to identify sharp solid-fluid interfaces. Fourthly, the model has been extended to simulate highly compressible gas coupled with fracturing solids. This model has been validated by various test cases and results are in good agreement with both experimental and numerical data in published literature. This model is capable to simulate the aerodynamic and hydrodynamic details of fluids and the stress, vibration, deformation and motion of structures simultaneously. Finally, this model has been applied to several industrial applications including a floating structure being moved around by complex hydrodynamic flows involving wave breaking; a blasting engineering simulation with shock waves, fracture propagation, gas-solid interaction and flying fragments; fluid dynamics, flow-induced vibrations, flow-induced fractures of a full-scale vertical axis turbine. Some useful conclusions, e.g. how to model them, how to make them stable and how to predict when they will break, are obtained by this FSI model when applying it to the above applications.Open Acces

    A Moving Boundary Flux Stabilization Method for Cartesian Cut-Cell Grids using Directional Operator Splitting

    Full text link
    An explicit moving boundary method for the numerical solution of time-dependent hyperbolic conservation laws on grids produced by the intersection of complex geometries with a regular Cartesian grid is presented. As it employs directional operator splitting, implementation of the scheme is rather straightforward. Extending the method for static walls from Klein et al., Phil. Trans. Roy. Soc., A367, no. 1907, 4559-4575 (2009), the scheme calculates fluxes needed for a conservative update of the near-wall cut-cells as linear combinations of standard fluxes from a one-dimensional extended stencil. Here the standard fluxes are those obtained without regard to the small sub-cell problem, and the linear combination weights involve detailed information regarding the cut-cell geometry. This linear combination of standard fluxes stabilizes the updates such that the time-step yielding marginal stability for arbitrarily small cut-cells is of the same order as that for regular cells. Moreover, it renders the approach compatible with a wide range of existing numerical flux-approximation methods. The scheme is extended here to time dependent rigid boundaries by reformulating the linear combination weights of the stabilizing flux stencil to account for the time dependence of cut-cell volume and interface area fractions. The two-dimensional tests discussed include advection in a channel oriented at an oblique angle to the Cartesian computational mesh, cylinders with circular and triangular cross-section passing through a stationary shock wave, a piston moving through an open-ended shock tube, and the flow around an oscillating NACA 0012 aerofoil profile.Comment: 30 pages, 27 figures, 3 table

    Recent advances in the simulation of particle-laden flows

    Get PDF
    A substantial number of algorithms exists for the simulation of moving particles suspended in fluids. However, finding the best method to address a particular physical problem is often highly non-trivial and depends on the properties of the particles and the involved fluid(s) together. In this report we provide a short overview on a number of existing simulation methods and provide two state of the art examples in more detail. In both cases, the particles are described using a Discrete Element Method (DEM). The DEM solver is usually coupled to a fluid-solver, which can be classified as grid-based or mesh-free (one example for each is given). Fluid solvers feature different resolutions relative to the particle size and separation. First, a multicomponent lattice Boltzmann algorithm (mesh-based and with rather fine resolution) is presented to study the behavior of particle stabilized fluid interfaces and second, a Smoothed Particle Hydrodynamics implementation (mesh-free, meso-scale resolution, similar to the particle size) is introduced to highlight a new player in the field, which is expected to be particularly suited for flows including free surfaces.Comment: 16 pages, 4 figure

    Fluid-Structure Interaction with the Entropic Lattice Boltzmann Method

    Full text link
    We propose a novel fluid-structure interaction (FSI) scheme using the entropic multi-relaxation time lattice Boltzmann (KBC) model for the fluid domain in combination with a nonlinear finite element solver for the structural part. We show validity of the proposed scheme for various challenging set-ups by comparison to literature data. Beyond validation, we extend the KBC model to multiphase flows and couple it with FEM solver. Robustness and viability of the entropic multi-relaxation time model for complex FSI applications is shown by simulations of droplet impact on elastic superhydrophobic surfaces
    • …
    corecore