35 research outputs found

    Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0 (“roadmap”) represents the culmination of the UASSC’s work to identify existing standards and standards in development, assess gaps, and make recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 64 issue areas, identified a total of 60 gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 40 gaps/recommendations have been identified as high priority, 17 as medium priority, and 3 as low priority. A “gap” means no published standard or specification exists that covers the particular issue in question. In 36 cases, additional R&D is needed. The hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will be widely promoted and discussed over the course of the coming year, to assess progress on its implementation and to identify emerging issues that require further elaboration

    The applications of autonomous systems to forestry management

    Get PDF
    Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Global Operations Program at MIT, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 132-137).Public and private timberland owners continually search for new, cost effective methods to monitor and nurture their timber stand investments. Common management tasks include monitoring tree growth and tree health, estimating timber value and preventing wildfire. Many of these tasks are both manual and costly due to the vast areas and remote locations involved. Forestry experts predict that multi-vehicle autonomous systems may enable new, cost effective methods for performing various forest management tasks[1]. However, it remains unclear how these technologies may be applied, or where to focus development efforts. This research attempts to address this gap in literature, linking state-of-the-art research in forestry management science, robotics and autonomous systems, and product design and development. This thesis begins by reviewing existing forestry management practices and discussing a number of challenges identified through industry interviews and research. Modem product design methods are reviewed, and used to generate ideas for a number of new concept systems. Three design concepts are presented as detailed case studies. The data sets, methods and proposed systems discussed in this thesis may be used to guide future research in forestry management science, and drive further innovation in the emerging field of commercial and civilian autonomous systems. Key words: Forestry Management, Forestry Science, Robotics and Autonomous Systems, Unmanned Aerial Vehicles (UAV), Unmanned Aerial Systems (UAS), Product Design and Development, Light Detection and Ranging (LiDAR)by Joshua Przybylko.S.M.M.B.A

    Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0 (“roadmap”) is an update to version 1.0 of this document published in December 2018. It identifies existing standards and standards in development, assesses gaps, and makes recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 78 issue areas, identified a total of 71 open gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 47 gaps/recommendations have been identified as high priority, 21 as medium priority, and 3 as low priority. A “gap” means no published standard or specification exists that covers the particular issue in question. In 53 cases, additional R&D is needed. As with the earlier version of this document, the hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will continue to be promoted in the coming year. It is also envisioned that a mechanism may be established to assess progress on its implementation

    Device profiling analysis in Device-Aware Network

    Get PDF
    As more and more devices with a variety of capabilities are Internet-capable, device independence becomes a big issue when we would like the information that we request to be correctly displayed. This thesis introduces and compares how existing standards create a profile that describes the device capabilities to achieve the goal of device independence. After acknowledging the importance of device independence, this paper utilizes the idea to introduce a Device-Aware Network (DAN). DAN provides the infrastructure support for device-content compatibility matching for data transmission. We identify the major components of the DAN architecture and issues associated with providing this new network service. A Device-Aware Network will improve the network's efficiency by preventing unusable data from consuming host and network resources. The device profile is the key issue to achieve this goal.http://archive.org/details/deviceprofilingn109451301Captain, Taiwan ArmyApproved for public release; distribution is unlimited

    The Space to Lead

    Get PDF
    204 hlm.; 21 cm

    The Space to Lead

    Get PDF

    Aeronautical engineering: A continuing bibliography with indexes (supplement 249)

    Get PDF
    This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1988. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Security and defence research in the European Union: a landscape review

    Get PDF
    This landscape report describes the state of play of the European Union’s policies and activities in security and defence and the EU-funded research aimed at supporting them, with an exclusive focus on intentional harm. It is organised around several thematic building blocks under the umbrella of the three core priorities defined in the European agenda on security. The report reviews the current main risks and threats but also those that may emerge within the next 5 years, the policy and operational means developed to combat them, the main active stakeholders and the EU legislation in force. In this context, a short history of EU research on security and defence is presented, followed by an inventory of relevant research and development projects funded under the Horizon 2020 framework programme during the period 2014-2018. The specific contributions of the Joint Research Centre to security research are also highlighted. Finally, future avenues for security and defence research and development are discussed. Please note that the executive summary of this landscape report has been published simultaneously as a companion document.JRC.E.7-Knowledge for Security and Migratio

    Spinoff 2011

    Get PDF
    Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings
    corecore