1,653 research outputs found

    Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images

    Full text link
    The quality of modern astronomical data, the power of modern computers and the agility of current image-processing software enable the creation of high-quality images in a purely digital form. The combination of these technological advancements has created a new ability to make color astronomical images. And in many ways it has led to a new philosophy towards how to create them. A practical guide is presented on how to generate astronomical images from research data with powerful image-processing programs. These programs use a layering metaphor that allows for an unlimited number of astronomical datasets to be combined in any desired color scheme, creating an immense parameter space to be explored using an iterative approach. Several examples of image creation are presented. A philosophy is also presented on how to use color and composition to create images that simultaneously highlight scientific detail and are aesthetically appealing. This philosophy is necessary because most datasets do not correspond to the wavelength range of sensitivity of the human eye. The use of visual grammar, defined as the elements which affect the interpretation of an image, can maximize the richness and detail in an image while maintaining scientific accuracy. By properly using visual grammar, one can imply qualities that a two-dimensional image intrinsically cannot show, such as depth, motion and energy. In addition, composition can be used to engage viewers and keep them interested for a longer period of time. The use of these techniques can result in a striking image that will effectively convey the science within the image, to scientists and to the public.Comment: 104 pages, 38 figures, submitted to A

    A Markov Random Field Based Approach to 3D Mosaicing and Registration Applied to Ultrasound Simulation

    Get PDF
    A novel Markov Random Field (MRF) based method for the mosaicing of 3D ultrasound volumes is presented in this dissertation. The motivation for this work is the production of training volumes for an affordable ultrasound simulator, which offers a low-cost/portable training solution for new users of diagnostic ultrasound, by providing the scanning experience essential for developing the necessary psycho-motor skills. It also has the potential for introducing ultrasound instruction into medical education curriculums. The interest in ultrasound training stems in part from the widespread adoption of point-of-care scanners, i.e. low cost portable ultrasound scanning systems in the medical community. This work develops a novel approach for producing 3D composite image volumes and validates the approach using clinically acquired fetal images from the obstetrics department at the University of Massachusetts Medical School (UMMS). Results using the Visible Human Female dataset as well as an abdominal trauma phantom are also presented. The process is broken down into five distinct steps, which include individual 3D volume acquisition, rigid registration, calculation of a mosaicing function, group-wise non-rigid registration, and finally blending. Each of these steps, common in medical image processing, has been investigated in the context of ultrasound mosaicing and has resulted in improved algorithms. Rigid and non-rigid registration methods are analyzed in a probabilistic framework and their sensitivity to ultrasound shadowing artifacts is studied. The group-wise non-rigid registration problem is initially formulated as a maximum likelihood estimation, where the joint probability density function is comprised of the partially overlapping ultrasound image volumes. This expression is simplified using a block-matching methodology and the resulting discrete registration energy is shown to be equivalent to a Markov Random Field. Graph based methods common in computer vision are then used for optimization, resulting in a set of transformations that bring the overlapping volumes into alignment. This optimization is parallelized using a fusion approach, where the registration problem is divided into 8 independent sub-problems whose solutions are fused together at the end of each iteration. This method provided a speedup factor of 3.91 over the single threaded approach with no noticeable reduction in accuracy during our simulations. Furthermore, the registration problem is simplified by introducing a mosaicing function, which partitions the composite volume into regions filled with data from unique partially overlapping source volumes. This mosaicing functions attempts to minimize intensity and gradient differences between adjacent sources in the composite volume. Experimental results to demonstrate the performance of the group-wise registration algorithm are also presented. This algorithm is initially tested on deformed abdominal image volumes generated using a finite element model of the Visible Human Female to show the accuracy of its calculated displacement fields. In addition, the algorithm is evaluated using real ultrasound data from an abdominal phantom. Finally, composite obstetrics image volumes are constructed using clinical scans of pregnant subjects, where fetal movement makes registration/mosaicing especially difficult. Our solution to blending, which is the final step of the mosaicing process, is also discussed. The trainee will have a better experience if the volume boundaries are visually seamless, and this usually requires some blending prior to stitching. Also, regions of the volume where no data was collected during scanning should have an ultrasound-like appearance before being displayed in the simulator. This ensures the trainee\u27s visual experience isn\u27t degraded by unrealistic images. A discrete Poisson approach has been adapted to accomplish these tasks. Following this, we will describe how a 4D fetal heart image volume can be constructed from swept 2D ultrasound. A 4D probe, such as the Philips X6-1 xMATRIX Array, would make this task simpler as it can acquire 3D ultrasound volumes of the fetal heart in real-time; However, probes such as these aren\u27t widespread yet. Once the theory has been introduced, we will describe the clinical component of this dissertation. For the purpose of acquiring actual clinical ultrasound data, from which training datasets were produced, 11 pregnant subjects were scanned by experienced sonographers at the UMMS following an approved IRB protocol. First, we will discuss the software/hardware configuration that was used to conduct these scans, which included some custom mechanical design. With the data collected using this arrangement we generated seamless 3D fetal mosaics, that is, the training datasets, loaded them into our ultrasound training simulator, and then subsequently had them evaluated by the sonographers at the UMMS for accuracy. These mosaics were constructed from the raw scan data using the techniques previously introduced. Specific training objectives were established based on the input from our collaborators in the obstetrics sonography group. Important fetal measurements are reviewed, which form the basis for training in obstetrics ultrasound. Finally clinical images demonstrating the sonographer making fetal measurements in practice, which were acquired directly by the Philips iU22 ultrasound machine from one of our 11 subjects, are compared with screenshots of corresponding images produced by our simulator

    A Markov Random Field Based Approach to 3D Mosaicing and Registration Applied to Ultrasound Simulation

    Get PDF
    A novel Markov Random Field (MRF) based method for the mosaicing of 3D ultrasound volumes is presented in this dissertation. The motivation for this work is the production of training volumes for an affordable ultrasound simulator, which offers a low-cost/portable training solution for new users of diagnostic ultrasound, by providing the scanning experience essential for developing the necessary psycho-motor skills. It also has the potential for introducing ultrasound instruction into medical education curriculums. The interest in ultrasound training stems in part from the widespread adoption of point-of-care scanners, i.e. low cost portable ultrasound scanning systems in the medical community. This work develops a novel approach for producing 3D composite image volumes and validates the approach using clinically acquired fetal images from the obstetrics department at the University of Massachusetts Medical School (UMMS). Results using the Visible Human Female dataset as well as an abdominal trauma phantom are also presented. The process is broken down into five distinct steps, which include individual 3D volume acquisition, rigid registration, calculation of a mosaicing function, group-wise non-rigid registration, and finally blending. Each of these steps, common in medical image processing, has been investigated in the context of ultrasound mosaicing and has resulted in improved algorithms. Rigid and non-rigid registration methods are analyzed in a probabilistic framework and their sensitivity to ultrasound shadowing artifacts is studied. The group-wise non-rigid registration problem is initially formulated as a maximum likelihood estimation, where the joint probability density function is comprised of the partially overlapping ultrasound image volumes. This expression is simplified using a block-matching methodology and the resulting discrete registration energy is shown to be equivalent to a Markov Random Field. Graph based methods common in computer vision are then used for optimization, resulting in a set of transformations that bring the overlapping volumes into alignment. This optimization is parallelized using a fusion approach, where the registration problem is divided into 8 independent sub-problems whose solutions are fused together at the end of each iteration. This method provided a speedup factor of 3.91 over the single threaded approach with no noticeable reduction in accuracy during our simulations. Furthermore, the registration problem is simplified by introducing a mosaicing function, which partitions the composite volume into regions filled with data from unique partially overlapping source volumes. This mosaicing functions attempts to minimize intensity and gradient differences between adjacent sources in the composite volume. Experimental results to demonstrate the performance of the group-wise registration algorithm are also presented. This algorithm is initially tested on deformed abdominal image volumes generated using a finite element model of the Visible Human Female to show the accuracy of its calculated displacement fields. In addition, the algorithm is evaluated using real ultrasound data from an abdominal phantom. Finally, composite obstetrics image volumes are constructed using clinical scans of pregnant subjects, where fetal movement makes registration/mosaicing especially difficult. Our solution to blending, which is the final step of the mosaicing process, is also discussed. The trainee will have a better experience if the volume boundaries are visually seamless, and this usually requires some blending prior to stitching. Also, regions of the volume where no data was collected during scanning should have an ultrasound-like appearance before being displayed in the simulator. This ensures the trainee\u27s visual experience isn\u27t degraded by unrealistic images. A discrete Poisson approach has been adapted to accomplish these tasks. Following this, we will describe how a 4D fetal heart image volume can be constructed from swept 2D ultrasound. A 4D probe, such as the Philips X6-1 xMATRIX Array, would make this task simpler as it can acquire 3D ultrasound volumes of the fetal heart in real-time; However, probes such as these aren\u27t widespread yet. Once the theory has been introduced, we will describe the clinical component of this dissertation. For the purpose of acquiring actual clinical ultrasound data, from which training datasets were produced, 11 pregnant subjects were scanned by experienced sonographers at the UMMS following an approved IRB protocol. First, we will discuss the software/hardware configuration that was used to conduct these scans, which included some custom mechanical design. With the data collected using this arrangement we generated seamless 3D fetal mosaics, that is, the training datasets, loaded them into our ultrasound training simulator, and then subsequently had them evaluated by the sonographers at the UMMS for accuracy. These mosaics were constructed from the raw scan data using the techniques previously introduced. Specific training objectives were established based on the input from our collaborators in the obstetrics sonography group. Important fetal measurements are reviewed, which form the basis for training in obstetrics ultrasound. Finally clinical images demonstrating the sonographer making fetal measurements in practice, which were acquired directly by the Philips iU22 ultrasound machine from one of our 11 subjects, are compared with screenshots of corresponding images produced by our simulator

    Development Of A High Performance Mosaicing And Super-Resolution Algorithm

    Get PDF
    In this dissertation, a high-performance mosaicing and super-resolution algorithm is described. The scale invariant feature transform (SIFT)-based mosaicing algorithm builds an initial mosaic which is iteratively updated by the robust super resolution algorithm to achieve the final high-resolution mosaic. Two different types of datasets are used for testing: high altitude balloon data and unmanned aerial vehicle data. To evaluate our algorithm, five performance metrics are employed: mean square error, peak signal to noise ratio, singular value decomposition, slope of reciprocal singular value curve, and cumulative probability of blur detection. Extensive testing shows that the proposed algorithm is effective in improving the captured aerial data and the performance metrics are accurate in quantifying the evaluation of the algorithm

    The ORSER LANDSAT Data Base of Pennsylvania

    Get PDF
    A mosaicked LANDSAT data base for Pennsylvania, installed at the computation center of the Pennsylvania State University is described. Initially constructed by Penn State's Office for Remote Sensing of Earth Resources (ORSER) for the purpose of assisting in state-wide mapping of gypsy moth defoliation, the data base will be available to a variety of potential users. It will provide geometrically correct LANDSAT data accessible by political, jurisdictional, or arbitrary boundaries
    corecore