207 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationFor many with severe-to-profound hearing loss, a condition in which the cochlea is unable to convert sound vibration into neural information to the brain, the cochlear implant has become the standard treatment. The goal of a cochlear-implant system is to bypass the malfunctioned cochlea and directly stimulate the nerves responsible for hearing through an array of electrodes on a silicone-elastomer carrier. However, the insertion of the electrode arrays can often cause intracochlear damage and eliminate residual hearing. With increased focus on hearing preservation in cochlear implantation, methods to minimize intracochlear damage have become a priority in electrode-array insertions. This dissertation explores the application of magnetic manipulation toward improved cochlear-implant electrode-array insertions. We start with initial 3-to-1 proof-of-concept experiments to demonstrate the feasibility of this approach. Then, to achieve relevancy at clinical scale, lateral-wall-type electrode-array models, used in the clinic, are slightly modified at the tip to include a tiny magnet. Next, a scala-tympani phantom is designed with both simulated cochleostomy and round-window openings to mimic both classes of insertions typically conducted. In particular, this is the first phantom to model a round-window opening and can be used reliably to simulate insertion forces in cadaver cochleae. Electrode arrays are then magnetically guided through these phantoms with a statistically significant (p < 0.05) reduction in insertion forces, and by as much as 50% for some electrode-array models. In particular, guiding the electrode-array tip through the cochlear hook and the basal turn, in the same insertion, was demonstrated for the first time using this technology. All existing methods to guide the electrode array can only be accomplished for the basal turn. Analysis is conducted to determine the optimal size and placement of a magnetic dipole-field source for use in the clinic. Its placement is determined to be consistently lateral to and anterior to the patient’s cochlea. Its size depends on numerous factors including the patient, torque requirements, and registration error. Sensitivity curves summarizing these factors are provided. The volume of the magnetic dipole-field source can be reduced by a factor of 5, on average, by moving it from the modiolar configuration originally proposed to this optimal configuration. We verify that magnetic forces do not pose any appreciable risk to the basilar membrane at the optimal configuration. Although patient-specific optimal configurations are characterized, a one-size-fits-all version is described that may be more practical and carries the benefit of substantial robustness to registration error

    Surgical planning tool for robotically assisted hearing aid implantation

    Get PDF
    PURPOSE : For the facilitation of minimally invasive robotically performed direct cochlea access (DCA) procedure, a surgical planning tool which enables the surgeon to define landmarks for patient-to-image registration, identify the necessary anatomical structures and define a safe DCA trajectory using patient image data (typically computed tomography (CT) or cone beam CT) is required. To this end, a dedicated end-to-end software planning system for the planning of DCA procedures that addresses current deficiencies has been developed. METHODS :    Efficient and robust anatomical segmentation is achieved through the implementation of semiautomatic algorithms; high-accuracy patient-to-image registration is achieved via an automated model-based fiducial detection algorithm and functionality for the interactive definition of a safe drilling trajectory based on case-specific drill positioning uncertainty calculations was developed. RESULTS :    The accuracy and safety of the presented software tool were validated during the conduction of eight DCA procedures performed on cadaver heads. The plan for each ear was completed in less than 20 min, and no damage to vital structures occurred during the procedures. The integrated fiducial detection functionality enabled final positioning accuracies of [Formula: see text] mm. CONCLUSIONS :    Results of this study demonstrated that the proposed software system could aid in the safe planning of a DCA tunnel within an acceptable time

    Min-Max Similarity: A Contrastive Learning Based Semi-Supervised Learning Network for Surgical Tools Segmentation

    Full text link
    Segmentation of images is a popular topic in medical AI. This is mainly due to the difficulty to obtain a significant number of pixel-level annotated data to train a neural network. To address this issue, we proposed a semi-supervised segmentation network based on contrastive learning. In contrast to the previous state-of-the-art, we introduce a contrastive learning form of dual-view training by employing classifiers and projectors to build all-negative, and positive and negative feature pairs respectively to formulate the learning problem as solving min-max similarity problem. The all-negative pairs are used to supervise the networks learning from different views and make sure to capture general features, and the consistency of unlabeled predictions is measured by pixel-wise contrastive loss between positive and negative pairs. To quantitative and qualitative evaluate our proposed method, we test it on two public endoscopy surgical tool segmentation datasets and one cochlear implant surgery dataset which we manually annotate the cochlear implant in surgical videos. The segmentation performance (dice coefficients) indicates that our proposed method outperforms state-of-the-art semi-supervised and fully supervised segmentation algorithms consistently. The code is publicly available at: https://github.com/AngeLouCN/Min_Max_Similarit

    A Sleeve-Based, Micromotion Avoiding, Retractable and Tear-Opening (SMART) Insertion Tool for Cochlear Implantation

    Get PDF
    Objective: In classical cochlear implantation, the insertion of the electrode array is strongly affected by the local anatomy and human kinematics. Herein, we present a concept for an insertion tool that allows to optimize the insertion trajectory beyond anatomical constraints and stabilizes the electrode array in manual implantation. A novel sleeve-based design allows the instrument to be compliant and potentially protective to intracochlear structures, while a tear-open mechanism allows it to be removed after insertion by simply retracting the tool. Methods: Conventional and tool-guided manual insertions were performed by expert cochlear implant surgeons in an analog temporal bone model that allows to simultaneously record intracochlear pressure, insertion forces and electrode array deformation. Results: Comparison between conventional and tool-guided insertions demonstrate a substantial reduction of maximum insertion forces, force variations, transverse intracochlear electrode array movement, and pressure transients. Conclusion: The presented tool can be utilized in manual cochlear implantation and significantly improves key metrics associated with intracochlear trauma. Significance: The instrument may ultimately help improve hearing outcomes in cochlear implantation. The versatile design may be used in both manual cochlear implantation and motorized and robotic insertion, as well as image-guided surgery

    Image-guided surgery and medical robotics in the cranial area

    Get PDF
    Surgery in the cranial area includes complex anatomic situations with high-risk structures and high demands for functional and aesthetic results. Conventional surgery requires that the surgeon transfers complex anatomic and surgical planning information, using spatial sense and experience. The surgical procedure depends entirely on the manual skills of the operator. The development of image-guided surgery provides new revolutionary opportunities by integrating presurgical 3D imaging and intraoperative manipulation. Augmented reality, mechatronic surgical tools, and medical robotics may continue to progress in surgical instrumentation, and ultimately, surgical care. The aim of this article is to review and discuss state-of-the-art surgical navigation and medical robotics, image-to-patient registration, aspects of accuracy, and clinical applications for surgery in the cranial area

    Robots and tools for remodeling bone

    Get PDF
    The field of robotic surgery has progressed from small teams of researchers repurposing industrial robots, to a competitive and highly innovative subsection of the medical device industry. Surgical robots allow surgeons to perform tasks with greater ease, accuracy, or safety, and fall under one of four levels of autonomy; active, semi-active, passive, and remote manipulator. The increased accuracy afforded by surgical robots has allowed for cementless hip arthroplasty, improved postoperative alignment following knee arthroplasty, and reduced duration of intraoperative fluoroscopy among other benefits. Cutting of bone has historically used tools such as hand saws and drills, with other elaborate cutting tools now used routinely to remodel bone. Improvements in cutting accuracy and additional options for safety and monitoring during surgery give robotic surgeries some advantages over conventional techniques. This article aims to provide an overview of current robots and tools with a common target tissue of bone, proposes a new process for defining the level of autonomy for a surgical robot, and examines future directions in robotic surgery

    AUGMENTED REALITY AND INTRAOPERATIVE C-ARM CONE-BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED ROBOTIC SURGERY

    Get PDF
    Minimally-invasive robotic-assisted surgery is a rapidly-growing alternative to traditionally open and laparoscopic procedures; nevertheless, challenges remain. Standard of care derives surgical strategies from preoperative volumetric data (i.e., computed tomography (CT) and magnetic resonance (MR) images) that benefit from the ability of multiple modalities to delineate different anatomical boundaries. However, preoperative images may not reflect a possibly highly deformed perioperative setup or intraoperative deformation. Additionally, in current clinical practice, the correspondence of preoperative plans to the surgical scene is conducted as a mental exercise; thus, the accuracy of this practice is highly dependent on the surgeon’s experience and therefore subject to inconsistencies. In order to address these fundamental limitations in minimally-invasive robotic surgery, this dissertation combines a high-end robotic C-arm imaging system and a modern robotic surgical platform as an integrated intraoperative image-guided system. We performed deformable registration of preoperative plans to a perioperative cone-beam computed tomography (CBCT), acquired after the patient is positioned for intervention. From the registered surgical plans, we overlaid critical information onto the primary intraoperative visual source, the robotic endoscope, by using augmented reality. Guidance afforded by this system not only uses augmented reality to fuse virtual medical information, but also provides tool localization and other dynamic intraoperative updated behavior in order to present enhanced depth feedback and information to the surgeon. These techniques in guided robotic surgery required a streamlined approach to creating intuitive and effective human-machine interferences, especially in visualization. Our software design principles create an inherently information-driven modular architecture incorporating robotics and intraoperative imaging through augmented reality. The system's performance is evaluated using phantoms and preclinical in-vivo experiments for multiple applications, including transoral robotic surgery, robot-assisted thoracic interventions, and cocheostomy for cochlear implantation. The resulting functionality, proposed architecture, and implemented methodologies can be further generalized to other C-arm-based image guidance for additional extensions in robotic surgery

    Flexible tactile digital feedback for clinical applications

    Get PDF
    Trauma and damage to the delicate structures of the inner ear frequently occurs during insertion of electrode array into the cochlea. This is strongly related to the excessive manual insertion force of the surgeon without any tool/tissue interaction feedback. The research is examined tool-tissue interaction of large prototype scale (12.5:1) digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale (4.5:1) cochlea phantom for simulating the human cochlear which could lead to small scale digit requirements. This flexible digit classified the tactile information from the digit-phantom interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The digit, distributive tactile sensors embedded with silicon-substrate is inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit is pre-curved in cochlea shape so that the digit better conforms to the shape of the scala tympani to lightly hug the modiolar wall of a scala. The digit have provided information on the characteristics of touch, digit-phantom interaction during the digit insertion. The tests demonstrated that even devices of such a relative simple design with low cost have potential to improve cochlear implants surgery and other lumen mapping applications by providing tactile feedback information by controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied diagnosis and path navigation procedures. The digit is a large scale stage and could be miniaturized in future to include more realistic surgical procedures
    corecore