3,984 research outputs found

    Integrating IoT and Novel Approaches to Enhance Electromagnetic Image Quality using Modern Anisotropic Diffusion and Speckle Noise Reduction Techniques

    Get PDF
    Electromagnetic imaging is becoming more important in many sectors, and this requires high-quality pictures for reliable analysis. This study makes use of the complementary relationship between IoT and current image processing methods to improve the quality of electromagnetic images. The research presents a new framework for connecting Internet of Things sensors to imaging equipment, allowing for instantaneous input and adjustment. At the same time, the suggested system makes use of sophisticated anisotropic diffusion algorithms to bring out key details and hide noise in electromagnetic pictures. In addition, a cutting-edge technique for reducing speckle noise is used to combat this persistent issue in electromagnetic imaging. The effectiveness of the suggested system was determined via a comparison to standard imaging techniques. There was a noticeable improvement in visual sharpness, contrast, and overall clarity without any loss of information, as shown by the results. Incorporating IoT sensors also facilitated faster calibration and real-time modifications, which opened up new possibilities for use in contexts with a high degree of variation. In fields where electromagnetic imaging plays a crucial role, such as medicine, remote sensing, and aerospace, the ramifications of this study are far-reaching. Our research demonstrates how the Internet of Things (IoT) and cutting-edge image processing have the potential to dramatically improve the functionality and versatility of electromagnetic imaging systems

    Color Image Processing based on Graph Theory

    Full text link
    [ES] La visión artificial es uno de los campos en mayor crecimiento en la actualidad que, junto con otras tecnologías como la Biometría o el Big Data, se ha convertido en el foco de interés de numerosas investigaciones y es considerada como una de las tecnologías del futuro. Este amplio campo abarca diversos métodos entre los que se encuentra el procesamiento y análisis de imágenes digitales. El éxito del análisis de imágenes y otras tareas de procesamiento de alto nivel, como pueden ser el reconocimiento de patrones o la visión 3D, dependerá en gran medida de la buena calidad de las imágenes de partida. Hoy en día existen multitud de factores que dañan las imágenes dificultando la obtención de imágenes de calidad óptima, esto ha convertido el (pre-) procesamiento digital de imágenes en un paso fundamental previo a la aplicación de cualquier otra tarea de procesado. Los factores más comunes son el ruido y las malas condiciones de adquisición: los artefactos provocados por el ruido dificultan la interpretación adecuada de la imagen y la adquisición en condiciones de iluminación o exposición deficientes, como escenas dinámicas, causan pérdida de información de la imagen que puede ser clave para ciertas tareas de procesamiento. Los pasos de (pre-)procesamiento de imágenes conocidos como suavizado y realce se aplican comúnmente para solventar estos problemas: El suavizado tiene por objeto reducir el ruido mientras que el realce se centra en mejorar o recuperar la información imprecisa o dañada. Con estos métodos conseguimos reparar información de los detalles y bordes de la imagen con una nitidez insuficiente o un contenido borroso que impide el (post-)procesamiento óptimo de la imagen. Existen numerosos métodos que suavizan el ruido de una imagen, sin embargo, en muchos casos el proceso de filtrado provoca emborronamiento en los bordes y detalles de la imagen. De igual manera podemos encontrar una enorme cantidad de técnicas de realce que intentan combatir las pérdidas de información, sin embargo, estas técnicas no contemplan la existencia de ruido en la imagen que procesan: ante una imagen ruidosa, cualquier técnica de realce provocará también un aumento del ruido. Aunque la idea intuitiva para solucionar este último caso será el previo filtrado y posterior realce, este enfoque ha demostrado no ser óptimo: el filtrado podrá eliminar información que, a su vez, podría no ser recuperable en el siguiente paso de realce. En la presente tesis doctoral se propone un modelo basado en teoría de grafos para el procesamiento de imágenes en color. En este modelo, se construye un grafo para cada píxel de tal manera que sus propiedades permiten caracterizar y clasificar dicho pixel. Como veremos, el modelo propuesto es robusto y capaz de adaptarse a una gran variedad de aplicaciones. En particular, aplicamos el modelo para crear nuevas soluciones a los dos problemas fundamentales del procesamiento de imágenes: suavizado y realce. Se ha estudiado el modelo en profundidad en función del umbral, parámetro clave que asegura la correcta clasificación de los píxeles de la imagen. Además, también se han estudiado las posibles características y posibilidades del modelo que nos han permitido sacarle el máximo partido en cada una de las posibles aplicaciones. Basado en este modelo se ha diseñado un filtro adaptativo capaz de eliminar ruido gaussiano de una imagen sin difuminar los bordes ni perder información de los detalles. Además, también ha permitido desarrollar un método capaz de realzar los bordes y detalles de una imagen al mismo tiempo que se suaviza el ruido presente en la misma. Esta aplicación simultánea consigue combinar dos operaciones opuestas por definición y superar así los inconvenientes presentados por el enfoque en dos etapas.[CA] La visió artificial és un dels camps en major creixement en l'actualitat que, junt amb altres tecnlogies com la Biometria o el Big Data, s'ha convertit en el focus d'interés de nombroses investigacions i és considerada com una de les tecnologies del futur. Aquest ampli camp comprén diversos m`etodes entre els quals es troba el processament digital d'imatges i anàlisis d'imatges digitals. L'èxit de l'anàlisis d'imatges i altres tasques de processament d'alt nivell, com poden ser el reconeixement de patrons o la visió 3D, dependrà en gran manera de la bona qualitat de les imatges de partida. Avui dia existeixen multitud de factors que danyen les imatges dificultant l'obtenció d'imatges de qualitat òptima, açò ha convertit el (pre-) processament digital d'imatges en un pas fonamental previa la l'aplicació de qualsevol altra tasca de processament. Els factors més comuns són el soroll i les males condicions d'adquisició: els artefactes provocats pel soroll dificulten la inter- pretació adequada de la imatge i l'adquisició en condicions d'il·luminació o exposició deficients, com a escenes dinàmiques, causen pèrdua d'informació de la imatge que pot ser clau per a certes tasques de processament. Els passos de (pre-) processament d'imatges coneguts com suavitzat i realç s'apliquen comunament per a resoldre aquests problemes: El suavitzat té com a objecte reduir el soroll mentres que el real se centra a millorar o recuperar la informació imprecisa o danyada. Amb aquests mètodes aconseguim reparar informació dels detalls i bords de la imatge amb una nitidesa insuficient o un contingut borrós que impedeix el (post-)processament òptim de la imatge. Existeixen nombrosos mètodes que suavitzen el soroll d'una imatge, no obstant això, en molts casos el procés de filtrat provoca emborronamiento en els bords i detalls de la imatge. De la mateixa manera podem trobar una enorme quantitat de tècniques de realç que intenten combatre les pèrdues d'informació, no obstant això, aquestes tècniques no contemplen l'existència de soroll en la imatge que processen: davant d'una image sorollosa, qualsevol tècnica de realç provocarà també un augment del soroll. Encara que la idea intuïtiva per a solucionar aquest últim cas seria el previ filtrat i posterior realç, aquest enfocament ha demostrat no ser òptim: el filtrat podria eliminar informació que, al seu torn, podria no ser recuperable en el seguënt pas de realç. En la present Tesi doctoral es proposa un model basat en teoria de grafs per al processament d'imatges en color. En aquest model, es construïx un graf per a cada píxel de tal manera que les seues propietats permeten caracteritzar i classificar el píxel en quëstió. Com veurem, el model proposat és robust i capaç d'adaptar-se a una gran varietat d'aplicacions. En particular, apliquem el model per a crear noves solucions als dos problemes fonamentals del processament d'imatges: suavitzat i realç. S'ha estudiat el model en profunditat en funció del llindar, paràmetre clau que assegura la correcta classificació dels píxels de la imatge. A més, també s'han estudiat les possibles característiques i possibilitats del model que ens han permés traure-li el màxim partit en cadascuna de les possibles aplicacions. Basat en aquest model s'ha dissenyat un filtre adaptatiu capaç d'eliminar soroll gaussià d'una imatge sense difuminar els bords ni perdre informació dels detalls. A més, també ha permés desenvolupar un mètode capaç de realçar els bords i detalls d'una imatge al mateix temps que se suavitza el soroll present en la mateixa. Aquesta aplicació simultània aconseguix combinar dues operacions oposades per definició i superar així els inconvenients presentats per l'enfocament en dues etapes.[EN] Computer vision is one of the fastest growing fields at present which, along with other technologies such as Biometrics or Big Data, has become the focus of interest of many research projects and it is considered one of the technologies of the future. This broad field includes a plethora of digital image processing and analysis tasks. To guarantee the success of image analysis and other high-level processing tasks as 3D imaging or pattern recognition, it is critical to improve the quality of the raw images acquired. Nowadays all images are affected by different factors that hinder the achievement of optimal image quality, making digital image processing a fundamental step prior to the application of any other practical application. The most common of these factors are noise and poor acquisition conditions: noise artefacts hamper proper image interpretation of the image; and acquisition in poor lighting or exposure conditions, such as dynamic scenes, causes loss of image information that can be key for certain processing tasks. Image (pre-) processing steps known as smoothing and sharpening are commonly applied to overcome these inconveniences: Smoothing is aimed at reducing noise and sharpening at improving or recovering imprecise or damaged information of image details and edges with insufficient sharpness or blurred content that prevents optimal image (post-)processing. There are many methods for smoothing the noise in an image, however in many cases the filtering process causes blurring at the edges and details of the image. Besides, there are also many sharpening techniques, which try to combat the loss of information due to blurring of image texture and need to contemplate the existence of noise in the image they process. When dealing with a noisy image, any sharpening technique may amplify the noise. Although the intuitive idea to solve this last case would be the previous filtering and later sharpening, this approach has proved not to be optimal: the filtering could remove information that, in turn, may not be recoverable in the later sharpening step. In the present PhD dissertation we propose a model based on graph theory for color image processing from a vector approach. In this model, a graph is built for each pixel in such a way that its features allow to characterize and classify the pixel. As we will show, the model we proposed is robust and versatile: potentially able to adapt to a variety of applications. In particular, we apply the model to create new solutions for the two fundamentals problems in image processing: smoothing and sharpening. To approach high performance image smoothing we use the proposed model to determine if a pixel belongs to a at region or not, taking into account the need to achieve a high-precision classification even in the presence of noise. Thus, we build an adaptive soft-switching filter by employing the pixel classification to combine the outputs from a filter with high smoothing capability and a softer one to smooth edge/detail regions. Further, another application of our model allows to use pixels characterization to successfully perform a simultaneous smoothing and sharpening of color images. In this way, we address one of the classical challenges within the image processing field. We compare all the image processing techniques proposed with other state-of-the-art methods to show that they are competitive both from an objective (numerical) and visual evaluation point of view.Pérez Benito, C. (2019). Color Image Processing based on Graph Theory [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/123955TESI

    Detection of dirt impairments from archived film sequences : survey and evaluations

    Get PDF
    Film dirt is the most commonly encountered artifact in archive restoration applications. Since dirt usually appears as a temporally impulsive event, motion-compensated interframe processing is widely applied for its detection. However, motion-compensated prediction requires a high degree of complexity and can be unreliable when motion estimation fails. Consequently, many techniques using spatial or spatiotemporal filtering without motion were also been proposed as alternatives. A comprehensive survey and evaluation of existing methods is presented, in which both qualitative and quantitative performances are compared in terms of accuracy, robustness, and complexity. After analyzing these algorithms and identifying their limitations, we conclude with guidance in choosing from these algorithms and promising directions for future research

    Graph-based methods for simultaneous smoothing and sharpening of color images

    Full text link
    [EN] In this work we introduce an image characterization of pixels based on local graphs that allows to distinguish different local regions around a pixel. This separation also permits us to develop a method for determining the role of each pixel in a neighborhood of any other, either for smoothing or for sharpening. Two methods for simultaneously conducting both processes are provided. Our solution overcomes the drawbacks of the classic two steps sequential smoothing and sharpening process: enhancing details while reducing noise and not losing critical information. The parameters of the methods are adjusted in two different ways: through observers visual quality optimization and with an objective optimization criterion. The results show that our methods outperform other recent state-of-the-art ones.We thank F. Russo for providing the implementation of the Fuzzy method and V. Ratmer, and Y.Y. Zeevi for providing the implementation of the FAB method. Cristina Jordan acknowledges the support of grant TEC2016-79884-C2-2-R. Samuel Morillas acknowledges the support of grant MTM2015-64373-P (MINECO/FEDER, Spain, UE).Pérez-Benito, C.; Jordan-Lluch, C.; Conejero, JA.; Morillas, S. (2019). Graph-based methods for simultaneous smoothing and sharpening of color images. Journal of Computational and Applied Mathematics. 350:380-395. https://doi.org/10.1016/j.cam.2018.10.031S38039535

    Comparing Adobe’s Unsharp Masks and High-Pass Filters in Photoshop Using the Visual Information Fidelity Metric

    Get PDF
    The present study examines image sharpening techniques quantitatively. A technique known as unsharp masking has been the preferred image sharpening technique for imaging professionals for many years. More recently, another professional-level sharpening solution has been introduced, namely, the high-pass filter technique of image sharpening. An extensive review of the literature revealed no purely quantitative studies that compared these techniques. The present research compares unsharp masking (USM) and high-pass filter (HPF) sharpening using an image quality metric known as Visual Information Fidelity (VIF). Prior researchers have used VIF data in research aimed at improving the USM sharpening technique. The present study aims to add to this branch of the literature through the comparison of the USM and the HPF sharpening techniques. The objective of the present research is to determine which sharpening technique, USM or HPF, yields the highest VIF scores for two categories of images, macro images and architectural images. Each set of images was further analyzed to compare the VIF scores of subjects with high and low severity depth of field defects. Finally, the researcher proposed rules for choosing USM and HPF parameters that resulted in optimal VIF scores. For each category, the researcher captured 24 images (12 with high severity defects and 12 with low severity defects). Each image was sharpened using an iterative process of choosing USM and HPF sharpening parameters, applying sharpening filters with the chosen parameters, and assessing the resulting images using the VIF metric. The process was repeated until the VIF scores could no longer be improved. The highest USM and HPF VIF scores for each image were compared using a paired t-test for statistical significance. The t-test results demonstrated that: • The USM VIF scores for macro images (M = 1.86, SD = 0.59) outperformed those for HPF (M = 1.34, SD = 0.18), a statistically significant mean increase of 0.52, t = 5.57 (23), p = 0.0000115. Similar results were obtained for both the high severity and low severity subsets of macro images. • The USM VIF scores for architectural images (M = 1.40, SD = 0.24) outperformed those for HPF (M = 1.26, SD = 0.15), a statistically significant mean increase of 0.14, t = 5.21 (23), p = 0.0000276. Similar results were obtained for both the high severity and low severity subsets of architectural images. The researcher found that the optimal sharpening parameters for USM and HPF depend on the content of the image. The optimal choice of parameters for USM depends on whether the most important features are edges or objects. Specific rules for choosing USM parameters were developed for each class of images. HPF is simpler in the fact that it only uses one parameter, Radius. Specific rules for choosing the HPF Radius were also developed for each class of images. Based on these results, the researcher concluded that USM outperformed HPF in sharpening macro and architectural images. The superior performance of USM could be due to the fact that it provides more parameters for users to control the sharpening process than HPF
    corecore