14,678 research outputs found

    Technical note on the validation of a semi-automated image analysis software application for estrogen and progesterone receptor detection in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The immunohistochemical detection of estrogen (ER) and progesterone (PR) receptors in breast cancer is routinely used for prognostic and predictive testing. Whole slide digitalization supported by dedicated software tools allows quantization of the image objects (e.g. cell membrane, nuclei) and an unbiased analysis of immunostaining results. Validation studies of image analysis applications for the detection of ER and PR in breast cancer specimens provided strong concordance between the pathologist's manual assessment of slides and scoring performed using different software applications.</p> <p>Methods</p> <p>The effectiveness of two connected semi-automated image analysis software (<it>NuclearQuant </it>v. 1.13 application for <it>Pannoramic</it>™ <it>Viewer </it>v. 1.14) for determination of ER and PR status in formalin-fixed paraffin embedded breast cancer specimens immunostained with the automated Leica Bond Max system was studied. First the detection algorithm was calibrated to the scores provided an independent assessors (pathologist), using selected areas from 38 small digital slides (created from 16 cases) containing a mean number of 195 cells. Each cell was manually marked and scored according to the Allred-system combining frequency and intensity scores. The performance of the calibrated algorithm was tested on 16 cases (14 invasive ductal carcinoma, 2 invasive lobular carcinoma) against the pathologist's manual scoring of digital slides.</p> <p>Results</p> <p>The detection was calibrated to 87 percent object detection agreement and almost perfect Total Score agreement (Cohen's kappa 0.859, quadratic weighted kappa 0.986) from slight or moderate agreement at the start of the study, using the un-calibrated algorithm. The performance of the application was tested against the pathologist's manual scoring of digital slides on 53 regions of interest of 16 ER and PR slides covering all positivity ranges, and the quadratic weighted kappa provided almost perfect agreement (κ = 0.981) among the two scoring schemes.</p> <p>Conclusions</p> <p><it>NuclearQuant </it>v. 1.13 application for <it>Pannoramic</it>™ <it>Viewer </it>v. 1.14 software application proved to be a reliable image analysis tool for pathologists testing ER and PR status in breast cancer.</p

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images

    Full text link
    Automated classification of histopathological whole-slide images (WSI) of breast tissue requires analysis at very high resolutions with a large contextual area. In this paper, we present context-aware stacked convolutional neural networks (CNN) for classification of breast WSIs into normal/benign, ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). We first train a CNN using high pixel resolution patches to capture cellular level information. The feature responses generated by this model are then fed as input to a second CNN, stacked on top of the first. Training of this stacked architecture with large input patches enables learning of fine-grained (cellular) details and global interdependence of tissue structures. Our system is trained and evaluated on a dataset containing 221 WSIs of H&E stained breast tissue specimens. The system achieves an AUC of 0.962 for the binary classification of non-malignant and malignant slides and obtains a three class accuracy of 81.3% for classification of WSIs into normal/benign, DCIS, and IDC, demonstrating its potentials for routine diagnostics

    Identification of Topological Features in Renal Tumor Microenvironment Associated with Patient Survival

    Get PDF
    Motivation As a highly heterogeneous disease, the progression of tumor is not only achieved by unlimited growth of the tumor cells, but also supported, stimulated, and nurtured by the microenvironment around it. However, traditional qualitative and/or semi-quantitative parameters obtained by pathologist’s visual examination have very limited capability to capture this interaction between tumor and its microenvironment. With the advent of digital pathology, computerized image analysis may provide a better tumor characterization and give new insights into this problem. Results We propose a novel bioimage informatics pipeline for automatically characterizing the topological organization of different cell patterns in the tumor microenvironment. We apply this pipeline to the only publicly available large histopathology image dataset for a cohort of 190 patients with papillary renal cell carcinoma obtained from The Cancer Genome Atlas project. Experimental results show that the proposed topological features can successfully stratify early- and middle-stage patients with distinct survival, and show superior performance to traditional clinical features and cellular morphological and intensity features. The proposed features not only provide new insights into the topological organizations of cancers, but also can be integrated with genomic data in future studies to develop new integrative biomarkers

    Automated segmentation of tissue images for computerized IHC analysis

    Get PDF
    This paper presents two automated methods for the segmentation ofimmunohistochemical tissue images that overcome the limitations of themanual approach aswell as of the existing computerized techniques. The first independent method, based on unsupervised color clustering, recognizes automatically the target cancerous areas in the specimen and disregards the stroma; the second method, based on colors separation and morphological processing, exploits automated segmentation of the nuclear membranes of the cancerous cells. Extensive experimental results on real tissue images demonstrate the accuracy of our techniques compared to manual segmentations; additional experiments show that our techniques are more effective in immunohistochemical images than popular approaches based on supervised learning or active contours. The proposed procedure can be exploited for any applications that require tissues and cells exploration and to perform reliable and standardized measures of the activity of specific proteins involved in multi-factorial genetic pathologie
    corecore