2,637 research outputs found

    Triangular Recurrences, Generalized Eulerian Numbers, and Related Number Triangles

    Full text link
    Many combinatorial and other number triangles are solutions of recurrences of the Graham-Knuth-Patashnik (GKP) type. Such triangles and their defining recurrences are investigated analytically. They are acted on by a transformation group generated by two involutions: a left-right reflection and an upper binomial transformation, acting row-wise. The group also acts on the bivariate exponential generating function (EGF) of the triangle. By the method of characteristics, the EGF of any GKP triangle has an implicit representation in terms of the Gauss hypergeometric function. There are several parametric cases when this EGF can be obtained in closed form. One is when the triangle elements are the generalized Stirling numbers of Hsu and Shiue. Another is when they are generalized Eulerian numbers of a newly defined kind. These numbers are related to the Hsu-Shiue ones by an upper binomial transformation, and can be viewed as coefficients of connection between polynomial bases, in a manner that generalizes the classical Worpitzky identity. Many identities involving these generalized Eulerian numbers and related generalized Narayana numbers are derived, including closed-form evaluations in combinatorially significant cases.Comment: 62 pages, final version, accepted by Advances in Applied Mathematic

    Path counting and random matrix theory

    Full text link
    We establish three identities involving Dyck paths and alternating Motzkin paths, whose proofs are based on variants of the same bijection. We interpret these identities in terms of closed random walks on the halfline. We explain how these identities arise from combinatorial interpretations of certain properties of the β\beta-Hermite and β\beta-Laguerre ensembles of random matrix theory. We conclude by presenting two other identities obtained in the same way, for which finding combinatorial proofs is an open problem.Comment: 14 pages, 13 figures and diagrams; submitted to the Electronic Journal of Combinatoric

    A probabilistic interpretation of a sequence related to Narayana polynomials

    Full text link
    A sequence of coefficients appearing in a recurrence for the Narayana polynomials is generalized. The coefficients are given a probabilistic interpretation in terms of beta distributed random variables. The recurrence established by M. Lasalle is then obtained from a classical convolution identity. Some arithmetical properties of the generalized coefficients are also established

    Counting Humps in Motzkin paths

    Get PDF
    In this paper we study the number of humps (peaks) in Dyck, Motzkin and Schr\"{o}der paths. Recently A. Regev noticed that the number of peaks in all Dyck paths of order nn is one half of the number of super Dyck paths of order nn. He also computed the number of humps in Motzkin paths and found a similar relation, and asked for bijective proofs. We give a bijection and prove these results. Using this bijection we also give a new proof that the number of Dyck paths of order nn with kk peaks is the Narayana number. By double counting super Schr\"{o}der paths, we also get an identity involving products of binomial coefficients.Comment: 8 pages, 2 Figure
    • …
    corecore