388 research outputs found

    I4U Submission to NIST SRE 2018: Leveraging from a Decade of Shared Experiences

    Get PDF
    The I4U consortium was established to facilitate a joint entry to NIST speaker recognition evaluations (SRE). The latest edition of such joint submission was in SRE 2018, in which the I4U submission was among the best-performing systems. SRE'18 also marks the 10-year anniversary of I4U consortium into NIST SRE series of evaluation. The primary objective of the current paper is to summarize the results and lessons learned based on the twelve sub-systems and their fusion submitted to SRE'18. It is also our intention to present a shared view on the advancements, progresses, and major paradigm shifts that we have witnessed as an SRE participant in the past decade from SRE'08 to SRE'18. In this regard, we have seen, among others, a paradigm shift from supervector representation to deep speaker embedding, and a switch of research challenge from channel compensation to domain adaptation.Comment: 5 page

    Speaker detection in the wild: Lessons learned from JSALT 2019

    Get PDF
    Submitted to ICASSP 2020This paper presents the problems and solutions addressed at the JSALT workshop when using a single microphone for speaker detection in adverse scenarios. The main focus was to tackle a wide range of conditions that go from meetings to wild speech. We describe the research threads we explored and a set of modules that was successful for these scenarios. The ultimate goal was to explore speaker detection; but our first finding was that an effective diarization improves detection, and not having a diarization stage impoverishes the performance. All the different configurations of our research agree on this fact and follow a main backbone that includes diarization as a previous stage. With this backbone, we analyzed the following problems: voice activity detection, how to deal with noisy signals, domain mismatch, how to improve the clustering; and the overall impact of previous stages in the final speaker detection. In this paper, we show partial results for speaker diarizarion to have a better understanding of the problem and we present the final results for speaker detection

    A Speaker Verification Backend with Robust Performance across Conditions

    Full text link
    In this paper, we address the problem of speaker verification in conditions unseen or unknown during development. A standard method for speaker verification consists of extracting speaker embeddings with a deep neural network and processing them through a backend composed of probabilistic linear discriminant analysis (PLDA) and global logistic regression score calibration. This method is known to result in systems that work poorly on conditions different from those used to train the calibration model. We propose to modify the standard backend, introducing an adaptive calibrator that uses duration and other automatically extracted side-information to adapt to the conditions of the inputs. The backend is trained discriminatively to optimize binary cross-entropy. When trained on a number of diverse datasets that are labeled only with respect to speaker, the proposed backend consistently and, in some cases, dramatically improves calibration, compared to the standard PLDA approach, on a number of held-out datasets, some of which are markedly different from the training data. Discrimination performance is also consistently improved. We show that joint training of the PLDA and the adaptive calibrator is essential -- the same benefits cannot be achieved when freezing PLDA and fine-tuning the calibrator. To our knowledge, the results in this paper are the first evidence in the literature that it is possible to develop a speaker verification system with robust out-of-the-box performance on a large variety of conditions

    Fast Scoring of Full Posterior PLDA Models

    Get PDF

    Attentive Adversarial Learning for Domain-Invariant Training

    Full text link
    Adversarial domain-invariant training (ADIT) proves to be effective in suppressing the effects of domain variability in acoustic modeling and has led to improved performance in automatic speech recognition (ASR). In ADIT, an auxiliary domain classifier takes in equally-weighted deep features from a deep neural network (DNN) acoustic model and is trained to improve their domain-invariance by optimizing an adversarial loss function. In this work, we propose an attentive ADIT (AADIT) in which we advance the domain classifier with an attention mechanism to automatically weight the input deep features according to their importance in domain classification. With this attentive re-weighting, AADIT can focus on the domain normalization of phonetic components that are more susceptible to domain variability and generates deep features with improved domain-invariance and senone-discriminativity over ADIT. Most importantly, the attention block serves only as an external component to the DNN acoustic model and is not involved in ASR, so AADIT can be used to improve the acoustic modeling with any DNN architectures. More generally, the same methodology can improve any adversarial learning system with an auxiliary discriminator. Evaluated on CHiME-3 dataset, the AADIT achieves 13.6% and 9.3% relative WER improvements, respectively, over a multi-conditional model and a strong ADIT baseline.Comment: 5 pages, 1 figure, ICASSP 201
    • 

    corecore