469 research outputs found

    The relationship between MEG and fMRI

    Get PDF
    In recent years functional neuroimaging techniques such as fMRI, MEG, EEG and PET have provided researchers with a wealth of information on human brain function. However none of these modalities can measure directly either the neuro-electrical or neuro-chemical processes that mediate brain function. This means that metrics directly reflecting brain ‘activity’ must be inferred from other metrics (e.g. magnetic fields (MEG) or haemodynamics (fMRI)). To overcome this limitation, many studies seek to combine multiple complementary modalities and an excellent example of this is the combination of MEG (which has high temporal resolution) with fMRI (which has high spatial resolution). However, the full potential of multi-modal approaches can only be truly realised in cases where the relationship between metrics is known. In this paper, we explore the relationship between measurements made using fMRI and MEG. We describe the origins of the two signals as well as their relationship to electrophysiology. We review multiple studies that have attempted to characterise the spatial relationship between fMRI and MEG, and we also describe studies that exploit the rich information content of MEG to explore differing relationships between MEG and fMRI across neural oscillatory frequency bands. Monitoring the brain at “rest” has become of significant recent interest to the neuroimaging community and we review recent evidence comparing MEG and fMRI metrics of functional connectivity. A brief discussion of the use of magnetic resonance spectroscopy (MRS) to probe the relationship between MEG/fMRI and neurochemistry is also given. Finally, we highlight future areas of interest and offer some recommendations for the parallel use of fMRI and MEG

    Choosing the Optimal Trigger Point for Analysis of Movements after Stroke Based on Magnetoencephalographic Recordings

    Get PDF
    The aim of this study was to select the optimal procedure for analysing motor fields (MF) and motor evoked fields (MEF) measured from brain injured patients. Behavioural pretests with patients have shown that most of them cannot stand measurements longer than 30 minutes and they also prefer to move the hand with rather short breaks between movements. Therefore, we were unable to measure the motor field (MF) optimally. Furthermore, we planned to use MEF to monitor cortical plasticity in a motor rehabilitation procedure. Classically, the MF analysis refers to rather long epochs around the movement onset (M-onset). We shortened the analysis epoch down to a range from 1000 milliseconds before until 500 milliseconds after M-onset to fulfil the needs of the patients. Additionally, we recorded the muscular activity (EMG) by surface electrodes on the extensor carpi ulnaris and flexor carpi ulnaris muscles. Magnetoencephalographic (MEG) data were recorded from 9 healthy subjects, who executed horizontally brisk extension and flexion in the right wrist. Significantly higher MF dipole strength was found in data based on EMG-onset than in M-onset based data. There was no difference in MEF I dipole strength between the two trigger latencies. In conclusion, we recommend averaging in respect to the EMG-onset for the analysis of both components MF as well as MEF

    Rapidly induced changes in neuromagnetic fields following repetitive hand movements

    No full text
    Sensory feedback plays a major role in movement execution and motor learning, particularly in motor rehabilitation. Whilst elaborating therapeutic strategies, it is of interest to visualize the effect of a therapeutic intervention at the moment of its application. We analyzed the effect of repeated execution of a simple extension and flexion movement of the wrist on the sensorimotor cortex of seven healthy subjects using magnetoencephalography. Spatial filtering based on current dipoles was used to quantify the strength of cortical activation. Our results showed an increase of cortical activation reflecting activity of efferent neurons, whereas the activity of proprioceptive afferent neurons was not affected. Since only efferent activity increased, it is suggested that this reflects phenomena of long-term potentiation

    Neurovascular coupling: insights from multi-modal dynamic causal modelling of fMRI and MEG

    Full text link
    This technical note presents a framework for investigating the underlying mechanisms of neurovascular coupling in the human brain using multi-modal magnetoencephalography (MEG) and functional magnetic resonance (fMRI) neuroimaging data. This amounts to estimating the evidence for several biologically informed models of neurovascular coupling using variational Bayesian methods and selecting the most plausible explanation using Bayesian model comparison. First, fMRI data is used to localise active neuronal sources. The coordinates of neuronal sources are then used as priors in the specification of a DCM for MEG, in order to estimate the underlying generators of the electrophysiological responses. The ensuing estimates of neuronal parameters are used to generate neuronal drive functions, which model the pre or post synaptic responses to each experimental condition in the fMRI paradigm. These functions form the input to a model of neurovascular coupling, the parameters of which are estimated from the fMRI data. This establishes a Bayesian fusion technique that characterises the BOLD response - asking, for example, whether instantaneous or delayed pre or post synaptic signals mediate haemodynamic responses. Bayesian model comparison is used to identify the most plausible hypotheses about the causes of the multimodal data. We illustrate this procedure by comparing a set of models of a single-subject auditory fMRI and MEG dataset. Our exemplar analysis suggests that the origin of the BOLD signal is mediated instantaneously by intrinsic neuronal dynamics and that neurovascular coupling mechanisms are region-specific. The code and example dataset associated with this technical note are available through the statistical parametric mapping (SPM) software package

    Neural dynamics underlying successful auditory short-term memory performance

    Get PDF
    Listeners often operate in complex acoustic environments, consisting of many concurrent sounds. Accurately encoding and maintaining such auditory objects in short-term memory is crucial for communication and scene analysis. Yet, the neural underpinnings of successful auditory short-term memory (ASTM) performance are currently not well understood. To elucidate this issue, we presented a novel, challenging auditory delayed match-to-sample task while recording MEG. Human participants listened to ‘scenes’ comprising three concurrent tone pip streams. The task was to indicate, after a delay, whether a probe stream was present in the just-heard scene. We present three key findings: First, behavioural performance revealed faster responses in correct versus incorrect trials as well as in ‘probe present’ versus ‘probe absent’ trials, consistent with ASTM search. Second, successful compared with unsuccessful ASTM performance was associated with a significant enhancement of event-related fields and oscillatory activity in the theta, alpha and beta frequency ranges. This extends previous findings of an overall increase of persistent activity during short-term memory performance. Third, using distributed source modelling, we found these effects to be confined mostly to sensory areas during encoding, presumably related to ASTM contents per se. Parietal and frontal sources then became relevant during the maintenance stage, indicating that effective STM operation also relies on ongoing inhibitory processes suppressing task-irrelevant information. In summary, our results deliver a detailed account of the neural patterns that differentiate successful from unsuccessful ASTM performance in the context of a complex, multi-object auditory scene

    Spatiotemporal brain imaging and modeling

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, February 2004.Includes bibliographical references.This thesis integrates hardware development, data analysis, and mathematical modeling to facilitate our understanding of brain cognition. Exploration of these brain mechanisms requires both structural and functional knowledge to (i) reconstruct the spatial distribution of the activity, (ii) to estimate when these areas are activated and what is the temporal sequence of activations, and (iii)to determine how the information flows in the large-scale neural network during the execution of cognitive and/or behavioral tasks. Advanced noninvasive medical imaging modalities are able to locate brain activities at high spatial and temporal resolutions. Quantitative modeling of these data is needed to understand how large-scale distributed neuronal interactions underlying perceptual, cognitive, and behavioral functions emerge and change over time. This thesis explores hardware enhancement and novel analytical approaches to improve the spatiotemporal resolution of single (MRI) or combined (MRI/fMRI and MEG/EEG) imaging modalities. In addition, mathematical approaches for identifying large-scale neural networks and their correlation to behavioral measurements are investigated. Part I of the thesis investigates parallel MRI. New hardware and image reconstruction techniques are introduced to improve spatiotemporal resolution and to reduce image distortion in structural and functional MRI. Part II discusses the localization of MEG/EEG signals on the cortical surface using anatomical information from AMTRI, and takes advantage of the high temporal resolution of MEG/EEG measurements to study cortical oscillations in the human auditory system. Part III introduces a multivariate modeling technique to identify "nodes" and "connectivity" in a(cont.) large-scale neural network and its correlation to behavior measurements in the human motor system.by Fa-Hsuan Lin.Ph.D

    Semantic radical consistency and character transparency effects in Chinese: an ERP study

    Get PDF
    BACKGROUND: This event-related potential (ERP) study aims to investigate the representation and temporal dynamics of Chinese orthography-to-semantics mappings by simultaneously manipulating character transparency and semantic radical consistency. Character components, referred to as radicals, make up the building blocks used dur...postprin
    corecore