26,376 research outputs found

    Learning Aerial Image Segmentation from Online Maps

    Get PDF
    This study deals with semantic segmentation of high-resolution (aerial) images where a semantic class label is assigned to each pixel via supervised classification as a basis for automatic map generation. Recently, deep convolutional neural networks (CNNs) have shown impressive performance and have quickly become the de-facto standard for semantic segmentation, with the added benefit that task-specific feature design is no longer necessary. However, a major downside of deep learning methods is that they are extremely data-hungry, thus aggravating the perennial bottleneck of supervised classification, to obtain enough annotated training data. On the other hand, it has been observed that they are rather robust against noise in the training labels. This opens up the intriguing possibility to avoid annotating huge amounts of training data, and instead train the classifier from existing legacy data or crowd-sourced maps which can exhibit high levels of noise. The question addressed in this paper is: can training with large-scale, publicly available labels replace a substantial part of the manual labeling effort and still achieve sufficient performance? Such data will inevitably contain a significant portion of errors, but in return virtually unlimited quantities of it are available in larger parts of the world. We adapt a state-of-the-art CNN architecture for semantic segmentation of buildings and roads in aerial images, and compare its performance when using different training data sets, ranging from manually labeled, pixel-accurate ground truth of the same city to automatic training data derived from OpenStreetMap data from distant locations. We report our results that indicate that satisfying performance can be obtained with significantly less manual annotation effort, by exploiting noisy large-scale training data.Comment: Published in IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSIN

    An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis

    Get PDF
    open access articleThis article presents a novel hybrid classification paradigm for medical diagnoses and prognoses prediction. The core mechanism of the proposed method relies on a centroid classification algorithm whose logic is exploited to formulate the classification task as a real-valued optimisation problem. A novel metaheuristic combining the algorithmic structure of Swarm Intelligence optimisers with the probabilistic search models of Estimation of Distribution Algorithms is designed to optimise such a problem, thus leading to high-accuracy predictions. This method is tested over 11 medical datasets and compared against 14 cherry-picked classification algorithms. Results show that the proposed approach is competitive and superior to the state-of-the-art on several occasions

    X-CNN: Cross-modal Convolutional Neural Networks for Sparse Datasets

    Full text link
    In this paper we propose cross-modal convolutional neural networks (X-CNNs), a novel biologically inspired type of CNN architectures, treating gradient descent-specialised CNNs as individual units of processing in a larger-scale network topology, while allowing for unconstrained information flow and/or weight sharing between analogous hidden layers of the network---thus generalising the already well-established concept of neural network ensembles (where information typically may flow only between the output layers of the individual networks). The constituent networks are individually designed to learn the output function on their own subset of the input data, after which cross-connections between them are introduced after each pooling operation to periodically allow for information exchange between them. This injection of knowledge into a model (by prior partition of the input data through domain knowledge or unsupervised methods) is expected to yield greatest returns in sparse data environments, which are typically less suitable for training CNNs. For evaluation purposes, we have compared a standard four-layer CNN as well as a sophisticated FitNet4 architecture against their cross-modal variants on the CIFAR-10 and CIFAR-100 datasets with differing percentages of the training data being removed, and find that at lower levels of data availability, the X-CNNs significantly outperform their baselines (typically providing a 2--6% benefit, depending on the dataset size and whether data augmentation is used), while still maintaining an edge on all of the full dataset tests.Comment: To appear in the 7th IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2016), 8 pages, 6 figures. Minor revisions, in response to reviewers' comment
    corecore