30 research outputs found

    An Extensive Validation of a SIR Epidemic Model to Study the Propagation of Jamming Attacks against IoT Wireless Networks.

    Get PDF
    This paper describes the utilization of an epidemic approach to study the propagation of jamming attacks, which can affect to different communication layers of all nodes in a variety of Internet of Things (IoT) wireless networks, regardless of the complexity and computing power of the devices. The jamming term considers both the more classical approach of interfering signals focusing on the physical level of the systems, and the cybersecurity approach that includes the attacks generated in upper layers like Medium Access Control (MAC), producing the same effect on the communication channel. In order to study the accuracy of the proposed epidemic model to estimate the propagation of jamming attacks, this paper uses the results of public simulations and experiments. It is of special interest the data obtained from experiments based on protocols such as Multi-Parent Hierarchical Protocol (MPH), Ad-hoc On-demand Distance Vector (AODV), and Dynamic Source Routing (DSR), working over the IEEE 802.15.4 standard. Then, using the formulation of the deterministic epidemiological model Susceptible–Infected–Recovered (SIR), together the abovementioned simulation, it has been seen that the proposed epidemic model could be used to estimate in that kind of IoT networks, the impact of the jamming attack in terms of attack severity and attack persistenceThis research has been partially supported by Ministerio de Economía, Industria y Competitividad (MINECO), Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional (FEDER, UE) under projects TIN2017-84844-C2-1-R and PGC2018-098813-B-C32

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Caracterización y Análisis de la Propagación de Ciberataques Jamming en Redes de Sensores Inalámbricos mediante Modelos Epidemiológicos

    Get PDF
    En general, los resultados obtenidos en los experimentos demuestran que los modelos epidemiológicos propuestos son capaces de determinar curvas características de ataques jamming (incluso con datos empíricos limitados), similares a las curvas que se obtendrían en un brote epidémico. La investigación desarrollada para el análisis predictivo de la propagación de ataques jamming, puede considerarse especialmente relevante, teniendo posibles aplicaciones en soluciones de Ciberseguridad para redes de sensores inalámbricosLa presente Tesis Doctoral aborda el análisis de ciberataques tipo jamming contra redes de sensores inalámbricos, aunando dos campos de investigación tan dispares como son la Ciberseguridad y la Epidemiología. Como hipótesis de base, se propone que la dinámica de propagación de este ciberataque dentro una red de sensores inalámbricos, debe presentar un patrón muy similar al de la propagación de una enfermedad producida por un patógeno infeccioso o virus dentro de una población de humanos, y cuyo principal vector de contagio sea el aire. Para validar esta hipótesis, y basándose en criterios propios de la investigación de brotes epidémicos, se han realizado una serie de experimentos caracterizando la propagación de ataques jamming aleatorios y reactivos contra una red de sensores inalámbricos, utilizando tres modelos epidemiológicos. Un modelo Susceptible-Infectado-Recuperado perteneciente al grupo de los modelos mecanicistas; y dos modelos de crecimiento logístico, pertenecientes al grupo de los modelos fenomenológicos, los cuales suelen utilizarse para realizar pronósticos a corto y medio plazo de la evolución de una enfermedad dentro de una población. Este doble enfoque, tratando los ciberataques jamming desde un punto de vista retrospectivo y predictivo, se consigue gracias al establecimiento de una relación directa entre el número de nodos afectados por el ataque y la dinámica de propagación de éste, tal y como se propone en la teoría epidemiológica, donde se reportan los individuos afectados por la enfermedad a estudio

    Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future

    Full text link
    Given the exponential expansion of the internet, the possibilities of security attacks and cybercrimes have increased accordingly. However, poorly implemented security mechanisms in the Internet of Things (IoT) devices make them susceptible to cyberattacks, which can directly affect users. IoT forensics is thus needed for investigating and mitigating such attacks. While many works have examined IoT applications and challenges, only a few have focused on both the forensic and security issues in IoT. Therefore, this paper reviews forensic and security issues associated with IoT in different fields. Future prospects and challenges in IoT research and development are also highlighted. As demonstrated in the literature, most IoT devices are vulnerable to attacks due to a lack of standardized security measures. Unauthorized users could get access, compromise data, and even benefit from control of critical infrastructure. To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system by designing a FLIP-based system that is highly scalable and adaptable. Utilizing a blockchain-based authentication mechanism with a multi-chain structure can provide additional security protection between different trust domains. Deep learning can be utilized to develop a network forensics framework with a high-performing system for detecting and tracking cyberattack incidents. Moreover, researchers should consider limiting the amount of data created and delivered when using big data to develop IoT-based smart systems. The findings of this review will stimulate academics to seek potential solutions for the identified issues, thereby advancing the IoT field.Comment: 77 pages, 5 figures, 5 table

    Optimizing Interconnectivity among Networks under Attacks

    Get PDF
    Networks may need to be interconnected for various reasons such as inter-organizational communication, redundant connectivity, increasing data-rate and minimizing delay or packet-loss, etc. However, the trustworthiness of an added interconnection link cannot be taken for granted due to the presence of attackers who may compromise the security of an interconnected network by intercepting the interconnections. Namely, an intercepted interconnection link may not be secured due to the data manipulations by attackers. In the first part of this dissertation, the number of interconnections between the two networks is optimized for maximizing the data-rate and minimizing the packet-loss under the threat of security attacks. The optimization of the interconnectivity considering the security attack is formulated using a rate-distortion optimization setting, as originally introduced by Claude E. Shannon in the information theory. In particular, each intercepted interconnection is modeled as a noisy communication channel where the attackers may manipulate the data by flipping and erasing of data bits, and then the total capacity for any given number of interconnections is calculated. By exploiting such formulation, the optimal number of interconnections between two networks is found under network administrators data-rate and packet-loss requirement, and most importantly, without compromising the data security. It is concluded analytically and verified by simulations under certain conditions, increasing interconnections beyond an optimal number would not be beneficial concerning the data-rates and packet-loss. In the second part of this dissertation, the vulnerability of the interconnected network is analyzed by a probabilistic model that maps the intensity of physical attacks to network component failure distributions. Also, assuming the network is susceptible to the attack propagation, the resiliency of the network is modeled by the influence model and epidemic model. Finally, a stochastic model is proposed to track the node failure dynamics in a network considering dependency with power failures. Besides, the cascading failure in the power grid is analyzed with a data-driven model that reproduces the evolution of power-transmission line failure in power grids. To summarize, the optimal interconnectivity among networks is analyzed under security attacks, and the dynamic interactions in an interconnected network are investigated under various physical and logical attacks. The proper application of this work would add the minimum number of inter-network connections between two networks without compromising the data security. The optimal number interconnections would meet network administrator’s requirement and minimize cost (both security and monetary) associated with unnecessary connections. This work can also be used to estimate the reliability of a communication network under different types of physical attacks independently and also by incorporating the dynamics of power failures

    Markov decision processes with applications in wireless sensor networks: A survey

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Space Systems: Emerging Technologies and Operations

    Get PDF
    SPACE SYSTEMS: EMERGING TECHNOLOGIES AND OPERATIONS is our seventh textbook in a series covering the world of UASs / CUAS/ UUVs. Other textbooks in our series are Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA\u27s Advanced Air Assets, 1st edition. Our previous six titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols et al., 2021) (Nichols R. K. et al., 2020) (Nichols R. et al., 2020) (Nichols R. et al., 2019) (Nichols R. K., 2018) Our seventh title takes on a new purview of Space. Let\u27s think of Space as divided into four regions. These are Planets, solar systems, the great dark void (which fall into the purview of astronomers and astrophysics), and the Dreamer Region. The earth, from a measurement standpoint, is the baseline of Space. It is the purview of geographers, engineers, scientists, politicians, and romantics. Flying high above the earth are Satellites. Military and commercial organizations govern their purview. The lowest altitude at which air resistance is low enough to permit a single complete, unpowered orbit is approximately 80 miles (125 km) above the earth\u27s surface. Normal Low Earth Orbit (LEO) satellite launches range between 99 miles (160 km) to 155 miles (250 km). Satellites in higher orbits experience less drag and can remain in Space longer in service. Geosynchronous orbit is around 22,000 miles (35,000 km). However, orbits can be even higher. UASs (Drones) have a maximum altitude of about 33,000 ft (10 km) because rotating rotors become physically limiting. (Nichols R. et al., 2019) Recreational drones fly at or below 400 ft in controlled airspace (Class B, C, D, E) and are permitted with prior authorization by using a LAANC or DroneZone. Recreational drones are permitted to fly at or below 400 ft in Class G (uncontrolled) airspace. (FAA, 2022) However, between 400 ft and 33,000 ft is in the purview of DREAMERS. In the DREAMERS region, Space has its most interesting technological emergence. We see emerging technologies and operations that may have profound effects on humanity. This is the mission our book addresses. We look at the Dreamer Region from three perspectives:1) a Military view where intelligence, jamming, spoofing, advanced materials, and hypersonics are in play; 2) the Operational Dreamer Region; whichincludes Space-based platform vulnerabilities, trash, disaster recovery management, A.I., manufacturing, and extended reality; and 3) the Humanitarian Use of Space technologies; which includes precision agriculture wildlife tracking, fire risk zone identification, and improving the global food supply and cattle management. Here’s our book’s breakdown: SECTION 1 C4ISR and Emerging Space Technologies. C4ISR stands for Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance. Four chapters address the military: Current State of Space Operations; Satellite Killers and Hypersonic Drones; Space Electronic Warfare, Jamming, Spoofing, and ECD; and the challenges of Manufacturing in Space. SECTION 2: Space Challenges and Operations covers in five chapters a wide purview of challenges that result from operations in Space, such as Exploration of Key Infrastructure Vulnerabilities from Space-Based Platforms; Trash Collection and Tracking in Space; Leveraging Space for Disaster Risk Reduction and Management; Bio-threats to Agriculture and Solutions From Space; and rounding out the lineup is a chapter on Modelling, Simulation, and Extended Reality. SECTION 3: Humanitarian Use of Space Technologies is our DREAMERS section. It introduces effective use of Drones and Precision Agriculture; and Civilian Use of Space for Environmental, Wildlife Tracking, and Fire Risk Zone Identification. SECTION 3 is our Hope for Humanity and Positive Global Change. Just think if the technologies we discuss, when put into responsible hands, could increase food production by 1-2%. How many more millions of families could have food on their tables? State-of-the-Art research by a team of fifteen SMEs is incorporated into our book. We trust you will enjoy reading it as much as we have in its writing. There is hope for the future.https://newprairiepress.org/ebooks/1047/thumbnail.jp

    Predictive smart relaying schemes for decentralized wireless systems

    Get PDF
    Recent developments in decentralized wireless networks make the technology potentially deployable in an extremely broad scenarios and applications. These include mobile Internet of Things (IoT) networks, smart cities, future innovative communication systems with multiple aerial layer flying network platforms and other advanced mobile communication networks. The approach also could be the solution for traditional operated mobile network backup plans, balancing traffic flow, emergency communication systems and so on. This thesis reveals and addresses several issues and challenges in conventional wireless communication systems, particular for the cases where there is a lack of resources and the disconnection of radio links. There are two message routing plans in the data packet store, carry and forwarding form are proposed, known as KaFiR and PaFiR. These employ the Bayesian filtering approach to track and predict the motion of surrounding portable devices and determine the next layer among candidate nodes. The relaying strategies endow smart devices with the intelligent capability to optimize the message routing path and improve the overall network performance with respect to resilience, tolerance and scalability. The simulation and test results present that the KaFiR routing protocol performs well when network subscribers are less mobile and the relaying protocol can be deployed on a wide range of portable terminals as the algorithm is rather simple to operate. The PaFiR routing strategy takes advantages of the Particle Filter algorithm, which can cope with complex network scenarios and applications, particularly when unmanned aerial vehicles are involved as the assisted intermediate layers. When compared with other existing DTN routing protocols and some of the latest relaying plans, both relaying protocols deliver an excellent overall performance for the key wireless communication network evolution metrics, which shows the promising future for this brand new research direction. Further extension work directions based on the tracking and prediction methods are suggested and reviewed. Future work on some new applications and services are also addressed

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp
    corecore