816 research outputs found

    Bridging MoCs in SystemC specifications of heterogeneous systems

    Get PDF
    In order to get an efficient specification and simulation of a heterogeneous system, the choice of an appropriate model of computation (MoC) for each system part is essential. The choice depends on the design domain (e.g., analogue or digital), and the suitable abstraction level used to specify and analyse the aspects considered to be important in each system part. In practice, MoC choice is implicitly made by selecting a suitable language and a simulation tool for each system part. This approach requires the connection of different languages and simulation tools when the specification and simulation of the system are considered as a whole. SystemC is able to support a more unified specification methodology and simulation environment for heterogeneous system, since it is extensible by libraries that support additional MoCs. A major requisite of these libraries is to provide means to connect system parts which are specified using different MoCs. However, these connection means usually do not provide enough flexibility to select and tune the right conversion semantic in amixed-level specification, simulation, and refinement process. In this article, converter channels, a flexible approach for MoC connection within a SystemC environment consisting of three extensions, namely, SystemC-AMS, HetSC, and OSSS+R, are presented.This work is supported by the FP6-2005-IST-5 European project

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels. This article presents an overview of the CONTREX European project, its main innovative technology (extension of a model based design approach, functional and extra-functional analysis with executable models and run-time management) and the final results of three industrial use-cases from different domain (avionics, automotive and telecommunication).The work leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2011 under grant agreement no. 611146

    Modeling Cyber-Physical Production Systems with SystemC-AMS

    Get PDF
    The heterogeneous nature of SystemC-AMS makes it a perfect candidate solution to support Cyber-Physical Production Systems (CPPSs), i.e., systems that are characterized by a tight interaction of the cyber part with the surrounding physical world and with manufacturing production processes. Nonetheless, the support for the modeling of physical and mechanical dynamics typical of production machinery goes far beyond the initial application scenario of SystemC-AMS, thus limiting its effectiveness and adoption in the production and manufacturing context. This paper starts with an analysis of the current adoption of SystemC-AMS to highlight the open points that still limit its effectiveness, with the goal of pinpointing current issues and to propose solutions that could improve its effectiveness, and make SystemC-AMS an essential resource also in the new Industry 4.0 scenario

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. The paper presents the CONTREX European project and its preliminary results. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels

    Re-use of tests and arguments for assesing dependable mixed-critically systems

    Get PDF
    The safety assessment of mixed-criticality systems (MCS) is a challenging activity due to system heterogeneity, design constraints and increasing complexity. The foundation for MCSs is the integrated architecture paradigm, where a compact hardware comprises multiple execution platforms and communication interfaces to implement concurrent functions with different safety requirements. Besides a computing platform providing adequate isolation and fault tolerance mechanism, the development of an MCS application shall also comply with the guidelines defined by the safety standards. A way to lower the overall MCS certification cost is to adopt a platform-based design (PBD) development approach. PBD is a model-based development (MBD) approach, where separate models of logic, hardware and deployment support the analysis of the resulting system properties and behaviour. The PBD development of MCSs benefits from a composition of modular safety properties (e.g. modular safety cases), which support the derivation of mixed-criticality product lines. The validation and verification (V&V) activities claim a substantial effort during the development of programmable electronics for safety-critical applications. As for the MCS dependability assessment, the purpose of the V&V is to provide evidences supporting the safety claims. The model-based development of MCSs adds more V&V tasks, because additional analysis (e.g., simulations) need to be carried out during the design phase. During the MCS integration phase, typically hardware-in-the-loop (HiL) plant simulators support the V&V campaigns, where test automation and fault-injection are the key to test repeatability and thorough exercise of the safety mechanisms. This dissertation proposes several V&V artefacts re-use strategies to perform an early verification at system level for a distributed MCS, artefacts that later would be reused up to the final stages in the development process: a test code re-use to verify the fault-tolerance mechanisms on a functional model of the system combined with a non-intrusive software fault-injection, a model to X-in-the-loop (XiL) and code-to-XiL re-use to provide models of the plant and distributed embedded nodes suited to the HiL simulator, and finally, an argumentation framework to support the automated composition and staged completion of modular safety-cases for dependability assessment, in the context of the platform-based development of mixed-criticality systems relying on the DREAMS harmonized platform.La dificultad para evaluar la seguridad de los sistemas de criticidad mixta (SCM) aumenta con la heterogeneidad del sistema, las restricciones de diseño y una complejidad creciente. Los SCM adoptan el paradigma de arquitectura integrada, donde un hardware embebido compacto comprende múltiples plataformas de ejecución e interfaces de comunicación para implementar funciones concurrentes y con diferentes requisitos de seguridad. Además de una plataforma de computación que provea un aislamiento y mecanismos de tolerancia a fallos adecuados, el desarrollo de una aplicación SCM además debe cumplir con las directrices definidas por las normas de seguridad. Una forma de reducir el coste global de la certificación de un SCM es adoptar un enfoque de desarrollo basado en plataforma (DBP). DBP es un enfoque de desarrollo basado en modelos (DBM), en el que modelos separados de lógica, hardware y despliegue soportan el análisis de las propiedades y el comportamiento emergente del sistema diseñado. El desarrollo DBP de SCMs se beneficia de una composición modular de propiedades de seguridad (por ejemplo, casos de seguridad modulares), que facilitan la definición de líneas de productos de criticidad mixta. Las actividades de verificación y validación (V&V) representan un esfuerzo sustancial durante el desarrollo de aplicaciones basadas en electrónica confiable. En la evaluación de la seguridad de un SCM el propósito de las actividades de V&V es obtener las evidencias que apoyen las aseveraciones de seguridad. El desarrollo basado en modelos de un SCM incrementa las tareas de V&V, porque permite realizar análisis adicionales (por ejemplo, simulaciones) durante la fase de diseño. En las campañas de pruebas de integración de un SCM habitualmente se emplean simuladores de planta hardware-in-the-loop (HiL), en donde la automatización de pruebas y la inyección de faltas son la clave para la repetitividad de las pruebas y para ejercitar completamente los mecanismos de tolerancia a fallos. Esta tesis propone diversas estrategias de reutilización de artefactos de V&V para la verificación temprana de un MCS distribuido, artefactos que se emplearán en ulteriores fases del desarrollo: la reutilización de código de prueba para verificar los mecanismos de tolerancia a fallos sobre un modelo funcional del sistema combinado con una inyección de fallos de software no intrusiva, la reutilización de modelo a X-in-the-loop (XiL) y código a XiL para obtener modelos de planta y nodos distribuidos aptos para el simulador HiL y, finalmente, un marco de argumentación para la composición automatizada y la compleción escalonada de casos de seguridad modulares, en el contexto del desarrollo basado en plataformas de sistemas de criticidad mixta empleando la plataforma armonizada DREAMS.Kritikotasun nahastuko sistemen segurtasun ebaluazioa jarduera neketsua da beraien heterogeneotasuna dela eta. Sistema hauen oinarria arkitektura integratuen paradigman datza, non hardware konpaktu batek exekuzio plataforma eta komunikazio interfaze ugari integratu ahal dituen segurtasun baldintza desberdineko funtzio konkurrenteak inplementatzeko. Konputazio plataformek isolamendu eta akatsen aurkako mekanismo egokiak emateaz gain, segurtasun arauek definituriko jarraibideak jarraitu behar dituzte kritikotasun mistodun aplikazioen garapenean. Sistema hauen zertifikazio prozesuaren kostua murrizteko aukera bat plataformetan oinarritutako garapenean (PBD) datza. Garapen planteamendu hau modeloetan oinarrituriko garapena da (MBD) non modeloaren logika, hardware eta garapen desberdinak sistemaren propietateen eta portaeraren aurka aztertzen diren. Kritikotasun mistodun sistemen PBD garapenak etekina ateratzen dio moduluetan oinarrituriko segurtasun propietateei, adibidez: segurtasun kasu modularrak (MSC). Modulu hauek kritikotasun mistodun produktu-lerroak ere hartzen dituzte kontutan. Berifikazio eta balioztatze (V&V) jarduerek esfortzu kontsideragarria eskatzen dute segurtasun-kiritikoetarako elektronika programagarrien garapenean. Kritikotasun mistodun sistemen konfiantzaren ebaluazioaren eta V&V jardueren helburua segurtasun eskariak jasotzen dituzten frogak proportzionatzea da. Kritikotasun mistodun sistemen modelo bidezko garapenek zeregin gehigarriak atxikitzen dizkio V&V jarduerari, fase honetan analisi gehigarriak (hots, simulazioak) zehazten direlako. Bestalde, kritikotasun mistodun sistemen integrazio fasean, hardware-in-the-loop (Hil) simulazio plantek V&V iniziatibak sostengatzen dituzte non testen automatizazioan eta akatsen txertaketan funtsezko jarduerak diren. Jarduera hauek frogen errepikapena eta segurtasun mekanismoak egiaztzea ahalbidetzen dute. Tesi honek V&V artefaktuen berrerabilpenerako estrategiak proposatzen ditu, kritikotasun mistodun sistemen egiaztatze azkarrerako sistema mailan eta garapen prozesuko azken faseetaraino erabili daitezkeenak. Esate baterako, test kodearen berrabilpena akats aurkako mekanismoak egiaztatzeko, modelotik X-in-the-loop (XiL)-ra eta kodetik XiL-rako konbertsioa HiL simulaziorako eta argumentazio egitura bat DREAMS Europear proiektuan definituriko arkitektura estiloan oinarrituriko segurtasun kasu modularrak automatikoki eta gradualki sortzeko

    Wireless extension to the existing SystemC design methodology

    Get PDF
    This research uses a SystemC design methodology to model and design complex wireless communication systems, because in the recent years, the complexity of wireless communication systems has increased and the modelling and design of such systems has become inefficient and challenging. The most important aspect of modelling wireless communication systems is that system design choices may affect the communication behaviour and also communication design choices may impact on the system design. Whilst, the SystemC modelling language shows great promise in the modelling of complex hardware/software systems, it still lacks a standard framework that supports modelling of wireless communication systems (particularly the use of wireless communication channels). SystemC lacks elements and components that can be used to express and simulate wireless systems. It does not support noise links natively. To fill this gap, this research proposes to extend the existing SystemC design methodology to include an efficient simulation of wireless systems. It proposes to achieve this by employing a system-level model of a noisy wireless communication channel, along with a small repertoire of standard components (which of course can be replaced on a per application basis). Finally, to validate our developed methodology, a flocking behaviour system is selected as a demonstration (case study). This is a very complex system modelled based on the developed methodology and partitioned along different parameters. By applying our developed methodology to model this system as a case study, we can prove that incorporating and fixing the wireless channel, wireless protocol, noise or all of these elements early in the design methodology is very advantageous. The modelled system is introduced to simulate the behaviour of the particles (mobile units) that form a mobile ad-hoc communication network. Wireless communication between particles is addressed with two scenarios: the first is created using a wireless channel model to link each pair of particles, which means the wireless communication between particles is addressed using a Point-to-Point (P2P) channel; the other scenario is created using a shared channel (broadcast link). Therefore, incorporating wireless features into existing SystemC design methodology, as done in this research, is a very important task, because by developing SystemC as a design tool to support wireless systems, hardware aspects, software parts and communication can be modelled, refined and validated simultaneously on the same platform, and the design space expanded into a two-dimensional design space comprising system and communication

    Standart-konformes Snapshotting für SystemC Virtuelle Plattformen

    Get PDF
    The steady increase in complexity of high-end embedded systems goes along with an increasingly complex design process. We are currently still in a transition phase from Hardware-Description Language (HDL) based design towards virtual-platform-based design of embedded systems. As design complexity rises faster than developer productivity a gap forms. Restoring productivity while at the same time managing increased design complexity can also be achieved through focussing on the development of new tools and design methodologies. In most application areas, high-level modelling languages such as SystemC are used in early design phases. In modern software development Continuous Integration (CI) is used to automatically test if a submitted piece of code breaks functionality. Application of the CI concept to embedded system design and testing requires fast build and test execution times from the virtual platform framework. For this use case the ability to save a specific state of a virtual platform becomes necessary. The saving and restoring of specific states of a simulation requires the ability to serialize all data structures within the simulation models. Improving the frameworks and establishing better methods will only help to narrow the design gap, if these changes are introduced with the needs of the engineers and developers in mind. Ultimately, it is their productivity that shall be improved. The ability to save the state of a virtual platform enables developers to run longer test campaigns that can even contain randomized test stimuli. If the saved states are modifiable the developers can inject faulty states into the simulation models. This work contributes an extension to the SoCRocket virtual platform framework to enable snapshotting. The snapshotting extension can be considered a reference implementation as the utilization of current SystemC/TLM standards makes it compatible to other frameworkds. Furthermore, integrating the UVM SystemC library into the framework enables test driven development and fast validation of SystemC/TLM models using snapshots. These extensions narrow the design gap by supporting designers, testers and developers to work more efficiently.Die stetige Steigerung der Komplexität eingebetteter Systeme geht einher mit einer ebenso steigenden Komplexität des Entwurfsprozesses. Wir befinden uns momentan in der Übergangsphase vom Entwurf von eingebetteten Systemen basierend auf Hardware-Beschreibungssprachen hin zum Entwurf ebendieser basierend auf virtuellen Plattformen. Da die Entwurfskomplexität rasanter steigt als die Produktivität der Entwickler, entsteht eine Kluft. Die Produktivität wiederherzustellen und gleichzeitig die gesteigerte Entwurfskomplexität zu bewältigen, kann auch erreicht werden, indem der Fokus auf die Entwicklung neuer Werkzeuge und Entwurfsmethoden gelegt wird. In den meisten Anwendungsgebieten werden Modellierungssprachen auf hoher Ebene, wie zum Beispiel SystemC, in den frühen Entwurfsphasen benutzt. In der modernen Software-Entwicklung wird Continuous Integration (CI) benutzt um automatisiert zu überprüfen, ob eine eingespielte Änderung am Quelltext bestehende Funktionalitäten beeinträchtigt. Die Anwendung des CI-Konzepts auf den Entwurf und das Testen von eingebetteten Systemen fordert schnelle Bau- und Test-Ausführungszeiten von dem genutzten Framework für virtuelle Plattformen. Für diesen Anwendungsfall wird auch die Fähigkeit, einen bestimmten Zustand der virtuellen Plattform zu speichern, erforderlich. Das Speichern und Wiederherstellen der Zustände einer Simulation erfordert die Serialisierung aller Datenstrukturen, die sich in den Simulationsmodellen befinden. Das Verbessern von Frameworks und Etablieren besserer Methodiken hilft nur die Entwurfs-Kluft zu verringern, wenn diese Änderungen mit Berücksichtigung der Bedürfnisse der Entwickler und Ingenieure eingeführt werden. Letztendlich ist es ihre Produktivität, die gesteigert werden soll. Die Fähigkeit den Zustand einer virtuellen Plattform zu speichern, ermöglicht es den Entwicklern, längere Testkampagnen laufen zu lassen, die auch zufällig erzeugte Teststimuli beinhalten können oder, falls die gespeicherten Zustände modifizierbar sind, fehlerbehaftete Zustände in die Simulationsmodelle zu injizieren. Mein mit dieser Arbeit geleisteter Beitrag beinhaltet die Erweiterung des SoCRocket Frameworks um Checkpointing Funktionalität im Sinne einer Referenzimplementierung. Weiterhin ermöglicht die Integration der UVM SystemC Bibliothek in das Framework die Umsetzung der testgetriebenen Entwicklung und schnelle Validierung von SystemC/TLM Modellen mit Hilfe von Snapshots

    On mixed abstraction, languages and simulation approach to refinement with SystemC AMS

    Get PDF
    Executable specifications and simulations arecornerstone to system design flows. Complex mixed signalembedded systems can be specified with SystemC AMSwhich supports abstraction and extensible models of computation. The language contains semantics for moduleconnections and synchronization required in analog anddigital interaction. Through the synchronization layer, user defined models of computation, solvers and simulators can be unified in the SystemC AMS simulator for achieving low level abstraction and model refinement. These improvements assist in amplifying model aspects and their contribution to the overall system behavior. This work presents cosimulating refined models with timed data flow paradigm of SystemC AMS. The methodology uses Cbased interaction between simulators. An RTL model ofdata encryption standard is demonstrated as an example.The methodology is flexible and can be applied in earlydesign decision trade off, architecture experimentation and particularly for model refinement and critical behavior analysis
    • …
    corecore