59,798 research outputs found

    Computing Optimal Designs of multiresponse Experiments reduces to Second-Order Cone Programming

    Full text link
    Elfving's Theorem is a major result in the theory of optimal experimental design, which gives a geometrical characterization of cc-optimality. In this paper, we extend this theorem to the case of multiresponse experiments, and we show that when the number of experiments is finite, c,A,Tc-,A-,T- and DD-optimal design of multiresponse experiments can be computed by Second-Order Cone Programming (SOCP). Moreover, our SOCP approach can deal with design problems in which the variable is subject to several linear constraints. We give two proofs of this generalization of Elfving's theorem. One is based on Lagrangian dualization techniques and relies on the fact that the semidefinite programming (SDP) formulation of the multiresponse cc-optimal design always has a solution which is a matrix of rank 11. Therefore, the complexity of this problem fades. We also investigate a \emph{model robust} generalization of cc-optimality, for which an Elfving-type theorem was established by Dette (1993). We show with the same Lagrangian approach that these model robust designs can be computed efficiently by minimizing a geometric mean under some norm constraints. Moreover, we show that the optimality conditions of this geometric programming problem yield an extension of Dette's theorem to the case of multiresponse experiments. When the number of unknown parameters is small, or when the number of linear functions of the parameters to be estimated is small, we show by numerical examples that our approach can be between 10 and 1000 times faster than the classic, state-of-the-art algorithms

    Optimal discrimination designs

    Get PDF
    We consider the problem of constructing optimal designs for model discrimination between competing regression models. Various new properties of optimal designs with respect to the popular TT-optimality criterion are derived, which in many circumstances allow an explicit determination of TT-optimal designs. It is also demonstrated, that in nested linear models the number of support points of TT-optimal designs is usually too small to estimate all parameters in the extended model. In many cases TT-optimal designs are usually not unique, and in this situation we give a characterization of all TT-optimal designs. Finally, TT-optimal designs are compared with optimal discriminating designs with respect to alternative criteria by means of a small simulation study.Comment: Published in at http://dx.doi.org/10.1214/08-AOS635 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Computational complexity of reconstruction and isomorphism testing for designs and line graphs

    Get PDF
    Graphs with high symmetry or regularity are the main source for experimentally hard instances of the notoriously difficult graph isomorphism problem. In this paper, we study the computational complexity of isomorphism testing for line graphs of tt-(v,k,λ)(v,k,\lambda) designs. For this class of highly regular graphs, we obtain a worst-case running time of O(vlogv+O(1))O(v^{\log v + O(1)}) for bounded parameters t,k,λt,k,\lambda. In a first step, our approach makes use of the Babai--Luks algorithm to compute canonical forms of tt-designs. In a second step, we show that tt-designs can be reconstructed from their line graphs in polynomial-time. The first is algebraic in nature, the second purely combinatorial. For both, profound structural knowledge in design theory is required. Our results extend earlier complexity results about isomorphism testing of graphs generated from Steiner triple systems and block designs.Comment: 12 pages; to appear in: "Journal of Combinatorial Theory, Series A

    Bayesian T-optimal discriminating designs

    Get PDF
    The problem of constructing Bayesian optimal discriminating designs for a class of regression models with respect to the T-optimality criterion introduced by Atkinson and Fedorov (1975a) is considered. It is demonstrated that the discretization of the integral with respect to the prior distribution leads to locally T-optimal discrimination designs can only deal with a few comparisons, but the discretization of the Bayesian prior easily yields to discrimination design problems for more than 100 competing models. A new efficient method is developed to deal with problems of this type. It combines some features of the classical exchange type algorithm with the gradient methods. Convergence is proved and it is demonstrated that the new method can find Bayesian optimal discriminating designs in situations where all currently available procedures fail.Comment: 25 pages, 3 figure
    corecore