103 research outputs found

    Comparative study of heuristics algorithms in solving flexible job shop scheduling problem with condition based maintenance

    Get PDF
    Purpose: This paper focuses on a classic optimization problem in operations research, the flexible job shop scheduling problem (FJSP), to discuss the method to deal with uncertainty in a manufacturing system. Design/methodology/approach: In this paper, condition based maintenance (CBM), a kind of preventive maintenance, is suggested to reduce unavailability of machines. Different to the simultaneous scheduling algorithm (SSA) used in the previous article (Neale & Cameron,1979), an inserting algorithm (IA) is applied, in which firstly a pre-schedule is obtained through heuristic algorithm and then maintenance tasks are inserted into the pre-schedule scheme. Findings: It is encouraging that a new better solution for an instance in benchmark of FJSP is obtained in this research. Moreover, factually SSA used in literature for solving normal FJSPPM (FJSP with PM) is not suitable for the dynamic FJSPPM. Through application in the benchmark of normal FJSPPM, it is found that although IA obtains inferior results compared to SSA used in literature, it performs much better in executing speed. Originality/value: Different to traditional scheduling of FJSP, uncertainty of machines is taken into account, which increases the complexity of the problem. An inserting algorithm (IA) is proposed to solve the dynamic scheduling problem. It is stated that the quality of the final result depends much on the quality of the pre-schedule obtained during the procedure of solving a normal FJSP. In order to find the best solution of FJSP, a comparative study of three heuristics is carried out, the integrated GA, ACO and ABC. In the comparative study, we find that GA performs best in the three heuristic algorithms. Meanwhile, a new better solution for an instance in benchmark of FJSP is obtained in this research.Peer Reviewe

    Enhanced Differential Evolution Based on Adaptive Mutation and Wrapper Local Search Strategies for Global Optimization Problems

    Get PDF
    AbstractDifferential evolution (DE) is a simple, powerful optimization algorithm, which has been widely used in many areas. However, the choices of the best mutation and search strategies are difficult for the specific issues. To alleviate these drawbacks and enhance the performance of DE, in this paper, the hybrid framework based on the adaptive mutation and Wrapper Local Search (WLS) schemes, is proposed to improve searching ability to efficiently guide the evolution of the population toward the global optimum. Furthermore, the effective particle encoding representation named Particle Segment Operation-Machine Assignment (PSOMA) that we previously published is applied to always produce feasible candidate solutions for solving the Flexible Job-shop Scheduling Problem (FJSP). Experiments were conducted on comprehensive set of complex benchmarks including the unimodal, multimodal and hybrid composition function, to validate performance of the proposed method and to compare with other state-of-the art DE variants such as jDE, JADE, MDE_pBX etc. Meanwhile, the hybrid DE model incorporating PSOMA is used to solve different representative instances based on practical data for multi-objective FJSP verifications. Simulation results indicate that the proposed method performs better for the majority of the single-objective scalable benchmark functions in terms of the solution accuracy and convergence rate. In addition, the wide range of Pareto-optimal solutions and more Gantt chart decision-makings can be provided for the multi-objective FJSP combinatorial optimizations

    An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem

    Get PDF
    The flexible job shop scheduling problem (FJSP) is vital to manufacturers especially in today’s constantly changing environment. It is a strongly NP-hard problem and therefore metaheuristics or heuristics are usually pursued to solve it. Most of the existing metaheuristics and heuristics, however, have low efficiency in convergence speed. To overcome this drawback, this paper develops an elitist quantum-inspired evolutionary algorithm. The algorithm aims to minimise the maximum completion time (makespan). It performs a global search with the quantum-inspired evolutionary algorithm and a local search with a method that is inspired by the motion mechanism of the electrons around an atomic nucleus. Three novel algorithms are proposed and their effect on the whole search is discussed. The elitist strategy is adopted to prevent the optimal solution from being destroyed during the evolutionary process. The results show that the proposed algorithm outperforms the best-known algorithms for FJSPs on most of the FJSP benchmarks

    Flexible Job-shop Scheduling Problem with Sequencing Flexibility: Mathematical Models and Solution Algorithms

    Get PDF
    Marketing strategists usually advocate increased product variety to attend better market demand. Furthermore, companies increasingly acquire more advanced manufacturing systems to take care of the increased product mix. Manufacturing resources with different capabilities give a competitive advantage to the industry. Proper management of the current productions resources is crucial for a thriving industry. Flexible job shop scheduling problem (FJSP) is an extension of the classical Job-shop scheduling problem (JSP) where operations can be performed by a set of candidate capable machines. An extended version of the FJSP, entitled FJSP with sequencing flexibility (FJSPS), is studied in this work. The extension considers precedence between the operations in the form of a directed acyclic graph instead of sequential order. In this work, a mixed integer programming (MILP) formulation is presented. A single objective formulation to minimize the weighted tardiness for the FJSP with sequencing flexibility is proposed. A different objective to minimize makespan is also considered. Due to the NP-hardness of the problem, a novel hybrid bacterial foraging optimization algorithm (HBFOA) is developed to tackle the FJSP with sequencing flexibility. It is inspired by the behaviour of the E. coli bacteria. It mimics the process to seek for food. The HBFOA is enhanced with simulated annealing (SA). The HBFOA has been packaged in the form of a decision support system (DSS). A case study of a small and medium-sized enterprise (SME) manufacturing industry is presented to validate the proposed HBFOA and MILP. Additional numerical experiments with instances provided by the literature are considered. The results demonstrate that the HBFOA outperformed the classical dispatching rules and the best integer solution of MILP when minimizing the weighted tardiness and offered comparable results for the makespan instances. In this dissertation, another critical aspect has been studied. In the industry, skilled workers usually are able to operate a specific set of machines. Hence, managers need to decide the best operation assignments to machines and workers. However, they need also to balance the workload between workers while accomplishing the due dates. In this research, a multi-objective mathematical model that minimizes makespan, maximal worker workload and weighted tardiness is developed. This model is entitled dual-resource FJSP with sequencing flexibility (DRFJSPS). It covers both the machine assignment and also the worker selection. Due to the intractability of the DRFJSPS, an elitist non-dominated sorting genetic algorithm (NSGA-II) is developed to solve this problem efficiently. The algorithm provides a set of Pareto-optimal solutions that the decision makers can use to evaluate the trade-offs of the conflicting objectives. New instances are introduced to demonstrate the applicability of the model and algorithm. A multi-random-start local search algorithm has been developed to assess the effectiveness of the adapted NSGA-II. The comparison of the solutions demonstrates that the modified NSGA-II provides a non-dominated efficient set in a reasonable time. Finally, a situation where there are multiple process plans available for a specific job is considered. This scenario is useful to be able to react to the current status of the shop where unpredictable circumstances (machine breakdown, current product mix, due dates, demand, etc.) can be accurately tackled. The determination of the process plan also depends on its cost. For that, a balance between cost, and the accomplishment of due dates is required. A multi-objective mathematical model that minimizes makespan, total processing cost and weighted tardiness are proposed to determine the sequence and the process plan to be used. This model is entitled flexible job-shop scheduling problem with sequencing and process plan flexibility (FJSP-2F). New instances are generated to show the applicability of the model

    Optimization approach for the combined planning and control of an agile assembly system for electric vehicles

    Get PDF
    For some years now, the automotive industry has been challenged by growing market dynamics, shorter product lifecycles and customers' increasing demands for individualization. In order to cope with this development, the automotive assembly needs to adapt quickly to changing demands with a low level of investment in the future. Under the current circumstances, the traditional line assembly for high volume production is reaching its limits in terms of adaptability and scalability. A promising solution to address the current challenges is the concept of the agile assembly. The concept of agile assembly breaks up the rigid linkage of assembly stations and, thus, enables full flexibility in the sequence of assembly operations only limited by the precedence graph. Therefore, the routing of electric vehicles in the agile assembly is based on the availability of resources such as assembly stations and automated guided vehicles that handle the material supply. Further, by transferring the transport function to the vehicle itself, investments for convey or systems are eliminated. This research work presents an optimization approach for the machine scheduling and transportation planning, which derives instructions for electric vehicles, assembly stations as well as automated guided vehicles. For each electric vehicle, an optimized route is calculated, taking into account product-specific precedence graphs and minimizing the overall makespan. In addition, the machine scheduling and transportation planning is integrated into a combined planning and control concept which covers the allocation of resources and the assignment of capabilities of the entire assembly system. The approach is implemented and applied to a practical case of a compact electric vehicle. Thus, the work contributes to the evaluation of agile assembly systems in automotive production
    corecore