1,416 research outputs found

    Configuring Cloud-Service Interfaces Using Flow Inheritance

    Get PDF
    Pavel Zaichenkov, Olga Tveretina, Alex Shafarenko, ‘Configuring Cloud-Service Interfaces Using Flow Inheritance’, paper presented at iFMCloud'16: The First International Workshop on Formal Methods for and on the Cloud, Reykjavic, Iceland, 1- 4 June, 2016.Technologies for composition of loosely-coupled web services in a modular and flexible way are in high demand today. On the one hand, the services must be flexible enough to be reused in a variety of contexts. On the other hand, they must be specific enough so that their composition may be provably consistent. The existing technologies (WS-CDL, WSCI and session types) require a behavioural contract associated with each service, which is impossible to derive automatically. Furthermore, neither technology supports flow inheritance: a mechanism that automatically and transparently propagates data through service pipelines. This paper presents a novel mechanism for automatic interface configuration of such services. Instead of checking consistency of the behavioural contracts, our approachfocuses solely on that of data formats in the presence of subtyping, polymorphism and flow inheritance. The paper presents a toolchain that automatically derives service interfaces from the code and performs interface configuration taking non-local constraints into account. Although the configuration mechanism is global, the services are compiled separately. As a result, the mechanism does not raise source security issues despite global service availability in adaptable form.Peer reviewe

    A Data Transformation System for Biological Data Sources

    Get PDF
    Scientific data of importance to biologists in the Human Genome Project resides not only in conventional databases, but in structured files maintained in a number of different formats (e.g. ASN.1 and ACE) as well a.s sequence analysis packages (e.g. BLAST and FASTA). These formats and packages contain a number of data types not found in conventional databases, such as lists and variants, and may be deeply nested. We present in this paper techniques for querying and transforming such data, and illustrate their use in a prototype system developed in conjunction with the Human Genome Center for Chromosome 22. We also describe optimizations performed by the system, a crucial issue for bulk data

    myExperiment: An ontology for e-Research

    No full text
    myExperiment describes itself as a "Social Virtual Research Environment" that provides the ability to share Research Objects (ROs) over a social infrastructure to facilitate actioning of research. The myExperiment Ontology is a logical representation of the data model used by this environment, allowing its data to be published in a standard RDF format, whilst providing a generic extensible framework that can be reused by similar projects. ROs are data structures designed to semantically enhance research publications by capturing and preserving the research method so that it can be reproduced in the future. This paper provides some motivation for an RO specification and briefly considers how existing domain-specifific ontologies might be integrated. It concludes by discussing the future direction of the myExperiment Ontology and how it will best support these ROs

    Generic Programming with Extensible Data Types; Or, Making Ad Hoc Extensible Data Types Less Ad Hoc

    Full text link
    We present a novel approach to generic programming over extensible data types. Row types capture the structure of records and variants, and can be used to express record and variant subtyping, record extension, and modular composition of case branches. We extend row typing to capture generic programming over rows themselves, capturing patterns including lifting operations to records and variations from their component types, and the duality between cases blocks over variants and records of labeled functions, without placing specific requirements on the fields or constructors present in the records and variants. We formalize our approach in System R{\omega}, an extension of F{\omega} with row types, and give a denotational semantics for (stratified) R{\omega} in Agda.Comment: To appear at: International Conference on Functional Programming 2023 Corrected citations from previous versio

    Row and Bounded Polymorphism via Disjoint Polymorphism

    Get PDF
    Polymorphism and subtyping are important features in mainstream OO languages. The most common way to integrate the two is via ?_{< :} style bounded quantification. A closely related mechanism is row polymorphism, which provides an alternative to subtyping, while still enabling many of the same applications. Yet another approach is to have type systems with intersection types and polymorphism. A recent addition to this design space are calculi with disjoint intersection types and disjoint polymorphism. With all these alternatives it is natural to wonder how they are related. This paper provides an answer to this question. We show that disjoint polymorphism can recover forms of both row polymorphism and bounded polymorphism, while retaining key desirable properties, such as type-safety and decidability. Furthermore, we identify the extra power of disjoint polymorphism which enables additional features that cannot be easily encoded in calculi with row polymorphism or bounded quantification alone. Ultimately we expect that our work is useful to inform language designers about the expressive power of those common features, and to simplify implementations and metatheory of feature-rich languages with polymorphism and subtyping

    A Programming Environment Evaluation Methodology for Object-Oriented Systems

    Get PDF
    The object-oriented design strategy as both a problem decomposition and system development paradigm has made impressive inroads into the various areas of the computing sciences. Substantial development productivity improvements have been demonstrated in areas ranging from artificial intelligence to user interface design. However, there has been very little progress in the formal characterization of these productivity improvements and in the identification of the underlying cognitive mechanisms. The development and validation of models and metrics of this sort require large amounts of systematically-gathered structural and productivity data. There has, however, been a notable lack of systematically-gathered information on these development environments. A large part of this problem is attributable to the lack of a systematic programming environment evaluation methodology that is appropriate to the evaluation of object-oriented systems

    Machine-Checked Semantic Session Typing

    Get PDF
    Session types- A family of type systems for message-passing concurrency-have been subject to many extensions, where each extension comes with a separate proof of type safety. These extensions cannot be readily combined, and their proofs of type safety are generally not machine checked, making their correctness less trustworthy. We overcome these shortcomings with a semantic approach to binary asynchronous affine session types, by developing a logical relations model in Coq using the Iris program logic. We demonstrate the power of our approach by combining various forms of polymorphism and recursion, asynchronous subtyping, references, and locks/mutexes. As an additional benefit of the semantic approach, we demonstrate how to manually prove typing judgements of racy, but safe, programs that cannot be type checked using only the rules of the type system. Programming Language

    Strongly typed heterogeneous collections

    Get PDF
    A heterogeneous collection is a datatype that is capable of storing data of different types, while providing operations for look-up, update, iteration, and others. There are various kinds of heterogeneous collections, differing in representation, invariants, and access operations. We describe HList --- a Haskell library for strongly typed heterogeneous collections including extensible records. We illustrate HList's benefits in the context of type-safe database access in Haskell. The HList library relies on common extensions of Haskell 98. Our exploration raises interesting issues regarding Haskell's type system, in particular, avoidance of overlapping instances, and reification of type equality and type unificatio
    • …
    corecore