515 research outputs found

    Measuring, modelling and predicting perceived reverberation

    Get PDF
    This paper investigates the relationship between the perceived level of reverberation and parameters measured from the room impulse response (RIR), as well as the design of an instrumental measure that predicts this perceived level. We first present the results of an experimental listening test conducted to assess the level of perceived reverberation in speech captured by a single microphone, before analysing the gathered data to assess the influence of parameters such as the reverberation time (T60) or the direct-to-reverberant ratio (DRR). Secondly, we use the results of this analysis to improve the signal based reverberation decay tail (RDT) measure, previously proposed by the authors to predict the perceived level of reverberation. The accuracy of the proposed measure is evaluated in terms of correlation with the subjective scores and compared to the performance of predictors using parameters extracted from the RIR. Results show that the proposed modifications to the RDT does improve its accuracy. Though still slightly outperformed by measures based on parameters of the RIR, we believe the proposed measure to be useful in scenarios in which the RIR or its parameters are unknown

    Reverberation: models, estimation and application

    No full text
    The use of reverberation models is required in many applications such as acoustic measurements, speech dereverberation and robust automatic speech recognition. The aim of this thesis is to investigate different models and propose a perceptually-relevant reverberation model with suitable parameter estimation techniques for different applications. Reverberation can be modelled in both the time and frequency domain. The model parameters give direct information of both physical and perceptual characteristics. These characteristics create a multidimensional parameter space of reverberation, which can be to a large extent captured by a time-frequency domain model. In this thesis, the relationship between physical and perceptual model parameters will be discussed. In the first application, an intrusive technique is proposed to measure the reverberation or reverberance, perception of reverberation and the colouration. The room decay rate parameter is of particular interest. In practical applications, a blind estimate of the decay rate of acoustic energy in a room is required. A statistical model for the distribution of the decay rate of the reverberant signal named the eagleMax distribution is proposed. The eagleMax distribution describes the reverberant speech decay rates as a random variable that is the maximum of the room decay rates and anechoic speech decay rates. Three methods were developed to estimate the mean room decay rate from the eagleMax distributions alone. The estimated room decay rates form a reverberation model that will be discussed in the context of room acoustic measurements, speech dereverberation and robust automatic speech recognition individually

    Spatial auditory display for acoustics and music collections

    Get PDF
    PhDThis thesis explores how audio can be better incorporated into how people access information and does so by developing approaches for creating three-dimensional audio environments with low processing demands. This is done by investigating three research questions. Mobile applications have processor and memory requirements that restrict the number of concurrent static or moving sound sources that can be rendered with binaural audio. Is there a more e cient approach that is as perceptually accurate as the traditional method? This thesis concludes that virtual Ambisonics is an ef cient and accurate means to render a binaural auditory display consisting of noise signals placed on the horizontal plane without head tracking. Virtual Ambisonics is then more e cient than convolution of HRTFs if more than two sound sources are concurrently rendered or if movement of the sources or head tracking is implemented. Complex acoustics models require signi cant amounts of memory and processing. If the memory and processor loads for a model are too large for a particular device, that model cannot be interactive in real-time. What steps can be taken to allow a complex room model to be interactive by using less memory and decreasing the computational load? This thesis presents a new reverberation model based on hybrid reverberation which uses a collection of B-format IRs. A new metric for determining the mixing time of a room is developed and interpolation between early re ections is investigated. Though hybrid reverberation typically uses a recursive lter such as a FDN for the late reverberation, an average late reverberation tail is instead synthesised for convolution reverberation. Commercial interfaces for music search and discovery use little aural information even though the information being sought is audio. How can audio be used in interfaces for music search and discovery? This thesis looks at 20 interfaces and determines that several themes emerge from past interfaces. These include using a two or three-dimensional space to explore a music collection, allowing concurrent playback of multiple sources, and tools such as auras to control how much information is presented. A new interface, the amblr, is developed because virtual two-dimensional spaces populated by music have been a common approach, but not yet a perfected one. The amblr is also interpreted as an art installation which was visited by approximately 1000 people over 5 days. The installation maps the virtual space created by the amblr to a physical space

    OBJECTIVE AND SUBJECTIVE EVALUATION OF DEREVERBERATION ALGORITHMS

    Get PDF
    Reverberation significantly impacts the quality and intelligibility of speech. Several dereverberation algorithms have been proposed in the literature to combat this problem. A majority of these algorithms utilize a single channel and are developed for monaural applications, and as such do not preserve the cues necessary for sound localization. This thesis describes a blind two-channel dereverberation technique that improves the quality of speech corrupted by reverberation while preserving cues that affect localization. The method is based by combining a short term (2ms) and long term (20ms) weighting function of the linear prediction (LP) residual of the input signal. The developed and other dereverberation algorithms are evaluated objectively and subjectively in terms of sound quality and localization accuracy. The binaural adaptation provides a significant increase in sound quality while removing the loss in localization ability found in the bilateral implementation

    Single- and multi-microphone speech dereverberation using spectral enhancement

    Get PDF
    In speech communication systems, such as voice-controlled systems, hands-free mobile telephones, and hearing aids, the received microphone signals are degraded by room reverberation, background noise, and other interferences. This signal degradation may lead to total unintelligibility of the speech and decreases the performance of automatic speech recognition systems. In the context of this work reverberation is the process of multi-path propagation of an acoustic sound from its source to one or more microphones. The received microphone signal generally consists of a direct sound, reflections that arrive shortly after the direct sound (commonly called early reverberation), and reflections that arrive after the early reverberation (commonly called late reverberation). Reverberant speech can be described as sounding distant with noticeable echo and colouration. These detrimental perceptual effects are primarily caused by late reverberation, and generally increase with increasing distance between the source and microphone. Conversely, early reverberations tend to improve the intelligibility of speech. In combination with the direct sound it is sometimes referred to as the early speech component. Reduction of the detrimental effects of reflections is evidently of considerable practical importance, and is the focus of this dissertation. More specifically the dissertation deals with dereverberation techniques, i.e., signal processing techniques to reduce the detrimental effects of reflections. In the dissertation, novel single- and multimicrophone speech dereverberation algorithms are developed that aim at the suppression of late reverberation, i.e., at estimation of the early speech component. This is done via so-called spectral enhancement techniques that require a specific measure of the late reverberant signal. This measure, called spectral variance, can be estimated directly from the received (possibly noisy) reverberant signal(s) using a statistical reverberation model and a limited amount of a priori knowledge about the acoustic channel(s) between the source and the microphone(s). In our work an existing single-channel statistical reverberation model serves as a starting point. The model is characterized by one parameter that depends on the acoustic characteristics of the environment. We show that the spectral variance estimator that is based on this model, can only be used when the source-microphone distance is larger than the so-called critical distance. This is, crudely speaking, the distance where the direct sound power is equal to the total reflective power. A generalization of the statistical reverberation model in which the direct sound is incorporated is developed. This model requires one additional parameter that is related to the ratio between the direct sound energy and the sound energy of all reflections. The generalized model is used to derive a novel spectral variance estimator. When the novel estimator is used for dereverberation rather than the existing estimator, and the source-microphone distance is smaller than the critical distance, the dereverberation performance is significantly increased. Single-microphone systems only exploit the temporal and spectral diversity of the received signal. Reverberation, of course, also induces spatial diversity. To additionally exploit this diversity, multiple microphones must be used, and their outputs must be combined by a suitable spatial processor such as the so-called delay and sum beamformer. It is not a priori evident whether spectral enhancement is best done before or after the spatial processor. For this reason we investigate both possibilities, as well as a merge of the spatial processor and the spectral enhancement technique. An advantage of the latter option is that the spectral variance estimator can be further improved. Our experiments show that the use of multiple microphones affords a significant improvement of the perceptual speech quality. The applicability of the theory developed in this dissertation is demonstrated using a hands-free communication system. Since hands-free systems are often used in a noisy and reverberant environment, the received microphone signal does not only contain the desired signal but also interferences such as room reverberation that is caused by the desired source, background noise, and a far-end echo signal that results from a sound that is produced by the loudspeaker. Usually an acoustic echo canceller is used to cancel the far-end echo. Additionally a post-processor is used to suppress background noise and residual echo, i.e., echo which could not be cancelled by the echo canceller. In this work a novel structure and post-processor for an acoustic echo canceller are developed. The post-processor suppresses late reverberation caused by the desired source, residual echo, and background noise. The late reverberation and late residual echo are estimated using the generalized statistical reverberation model. Experimental results convincingly demonstrate the benefits of the proposed system for suppressing late reverberation, residual echo and background noise. The proposed structure and post-processor have a low computational complexity, a highly modular structure, can be seamlessly integrated into existing hands-free communication systems, and affords a significant increase of the listening comfort and speech intelligibility

    DESIGN AND EVALUATION OF HARMONIC SPEECH ENHANCEMENT AND BANDWIDTH EXTENSION

    Get PDF
    Improving the quality and intelligibility of speech signals continues to be an important topic in mobile communications and hearing aid applications. This thesis explored the possibilities of improving the quality of corrupted speech by cascading a log Minimum Mean Square Error (logMMSE) noise reduction system with a Harmonic Speech Enhancement (HSE) system. In HSE, an adaptive comb filter is deployed to harmonically filter the useful speech signal and suppress the noisy components to noise floor. A Bandwidth Extension (BWE) algorithm was applied to the enhanced speech for further improvements in speech quality. Performance of this algorithm combination was evaluated using objective speech quality metrics across a variety of noisy and reverberant environments. Results showed that the logMMSE and HSE combination enhanced the speech quality in any reverberant environment and in the presence of multi-talker babble. The objective improvements associated with the BWE were found to be minima

    Perceptual compensation for the effects of reverberation on consonant identification: Evidence from studies with monaural stimuli

    Get PDF
    Mounting evidence suggests that listeners perceptually compensate for the adverse effects of reverberation in rooms when listening to speech monaurally. However, it is not clear whether the underlying perceptual mechanism would be at all effective in the high levels of stimulus uncertainty that are present in everyday listening. Three experiments investigated monaural compensation with a consonant identification task in which listeners heard different speech on each trial. Consonant confusions frequently arose when a greater degree of reverberation was added to a test-word than to its surrounding context, but compensation became apparent in conditions where the context reverberation was increased to match that of the test-word; here, the confusions were largely resolved. A second experiment shows that information from the test-word itself can also effect compensation. Finally, the time course of compensation was examined by applying reverberation to a portion of the preceding context; consonant identification improves as this portion increases in duration. These findings indicate a monaural compensation mechanism that is likely to be effective in everyday listening, allowing listeners to recalibrate as their reverberant environment changes

    Perceptual compensation for reverberation in human listeners and machines

    Get PDF
    This thesis explores compensation for reverberation in human listeners and machines. Late reverberation is typically understood as a distortion which degrades intelligibility. Recent research, however, shows that late reverberation is not always detrimental to human speech perception. At times, prolonged exposure to reverberation can provide a helpful acoustic context which improves identification of reverberant speech sounds. The physiology underpinning our robustness to reverberation has not yet been elucidated, but is speculated in this thesis to include efferent processes which have previously been shown to improve discrimination of noisy speech. These efferent pathways descend from higher auditory centres, effectively recalibrating the encoding of sound in the cochlea. Moreover, this thesis proposes that efferent-inspired computational models based on psychoacoustic principles may also improve performance for machine listening systems in reverberant environments. A candidate model for perceptual compensation for reverberation is proposed in which efferent suppression derives from the level of reverberation detected in the simulated auditory nerve response. The model simulates human performance in a phoneme-continuum identification task under a range of reverberant conditions, where a synthetically controlled test-word and its surrounding context phrase are independently reverberated. Addressing questions which arose from the model, a series of perceptual experiments used naturally spoken speech materials to investigate aspects of the psychoacoustic mechanism underpinning compensation. These experiments demonstrate a monaural compensation mechanism that is influenced by both the preceding context (which need not be intelligible speech) and by the test-word itself, and which depends on the time-direction of reverberation. Compensation was shown to act rapidly (within a second or so), indicating a monaural mechanism that is likely to be effective in everyday listening. Finally, the implications of these findings for the future development of computational models of auditory perception are considered
    • …
    corecore