9,542 research outputs found

    High dynamic range color image enhancement using fuzzy logic and bacterial foraging

    Get PDF
    High dynamic range images contain both the underexposed and the overexposed regions. The enhancement of the underexposed and the overexposed regions is the main concern of this paper. Two new transformation functions are proposed to modify the fuzzy membership values of under and the overexposed regions of an image respectively.For the overexposed regions, a rectangular hyperbolic function is used while for the underexposed regions, an S-function is applied. The shape and range of these functions can be controlled by the parameters involved, which are optimized using the bacterial foraging optimization algorithm so as to obtain the enhanced image. The hue, saturation, and intensity (HSV) color space is employed for the purpose of enhancement, where the hue component is preserved to keep the original color composition intact. This approach is applicable to a degraded image of mixed type. On comparison, the proposed transforms yield better results than the existing transformation functions17 for both the underexposed and the overexposed regions

    Microcalcifications Detection Using Image And Signal Processing Techniques For Early Detection Of Breast Cancer

    Get PDF
    Breast cancer has transformed into a severe health problem around the world. Early diagnosis is an important factor to survive this disease. The earliest detection signs of potential breast cancer that is distinguishable by current screening techniques are the presence of microcalcifications (MCs). MCs are small crystals of calcium apatite and their normal size ranges from 0.1mm to 0.5mm single crystals to groups up to a few centimeters in diameter. They are the first indication of breast cancer in more than 40% of all breast cancer cases, making their diagnosis critical. This dissertation proposes several segmentation techniques for detecting and isolating point microcalcifications: Otsu’s Method, Balanced Histogram Thresholding, Iterative Method, Maximum Entropy, Moment Preserving, and Genetic Algorithm. These methods were applied to medical images to detect microcalcifications. In this dissertation, results from the application of these techniques are presented and their efficiency for early detection of breast cancer is explained. This dissertation also explains theories and algorithms related to these techniques that can be used for breast cancer detection

    Noise-Enhanced and Human Visual System-Driven Image Processing: Algorithms and Performance Limits

    Get PDF
    This dissertation investigates the problem of image processing based on stochastic resonance (SR) noise and human visual system (HVS) properties, where several novel frameworks and algorithms for object detection in images, image enhancement and image segmentation as well as the method to estimate the performance limit of image segmentation algorithms are developed. Object detection in images is a fundamental problem whose goal is to make a decision if the object of interest is present or absent in a given image. We develop a framework and algorithm to enhance the detection performance of suboptimal detectors using SR noise, where we add a suitable dose of noise into the original image data and obtain the performance improvement. Micro-calcification detection is employed in this dissertation as an illustrative example. The comparative experiments with a large number of images verify the efficiency of the presented approach. Image enhancement plays an important role and is widely used in various vision tasks. We develop two image enhancement approaches. One is based on SR noise, HVS-driven image quality evaluation metrics and the constrained multi-objective optimization (MOO) technique, which aims at refining the existing suboptimal image enhancement methods. Another is based on the selective enhancement framework, under which we develop several image enhancement algorithms. The two approaches are applied to many low quality images, and they outperform many existing enhancement algorithms. Image segmentation is critical to image analysis. We present two segmentation algorithms driven by HVS properties, where we incorporate the human visual perception factors into the segmentation procedure and encode the prior expectation on the segmentation results into the objective functions through Markov random fields (MRF). Our experimental results show that the presented algorithms achieve higher segmentation accuracy than many representative segmentation and clustering algorithms available in the literature. Performance limit, or performance bound, is very useful to evaluate different image segmentation algorithms and to analyze the segmentability of the given image content. We formulate image segmentation as a parameter estimation problem and derive a lower bound on the segmentation error, i.e., the mean square error (MSE) of the pixel labels considered in our work, using a modified Cramér-Rao bound (CRB). The derivation is based on the biased estimator assumption, whose reasonability is verified in this dissertation. Experimental results demonstrate the validity of the derived bound

    Type-2 Fuzzy Logic for Edge Detection of Gray Scale Images

    Get PDF

    Mapping customer needs to engineering characteristics: an aerospace perspective for conceptual design

    No full text
    Designing complex engineering systems, such as an aircraft or an aero-engine, is immensely challenging. Formal Systems Engineering (SE) practices are widely used in the aerospace industry throughout the overall design process to minimise the overall design effort, corrective re-work, and ultimately overall development and manufacturing costs. Incorporating the needs and requirements from customers and other stakeholders into the conceptual and early design process is vital for the success and viability of any development programme. This paper presents a formal methodology, the Value-Driven Design (VDD) methodology that has been developed for collaborative and iterative use in the Extended Enterprise (EE) within the aerospace industry, and that has been applied using the Concept Design Analysis (CODA) method to map captured Customer Needs (CNs) into Engineering Characteristics (ECs) and to model an overall ‘design merit’ metric to be used in design assessments, sensitivity analyses, and engineering design optimisation studies. Two different case studies with increasing complexity are presented to elucidate the application areas of the CODA method in the context of the VDD methodology for the EE within the aerospace secto

    A Fully Automatic Segmentation Method for Breast Ultrasound Images

    Get PDF
    Breast cancer is the second leading cause of death of women worldwide. Accurate lesion boundary detection is important for breast cancer diagnosis. Since many crucial features for discriminating benign and malignant lesions are based on the contour, shape, and texture of the lesion, an accurate segmentation method is essential for a successful diagnosis. Ultrasound is an effective screening tool and primarily useful for differentiating benign and malignant lesions. However, due to inherent speckle noise and low contrast of breast ultrasound imaging, automatic lesion segmentation is still a challenging task. This research focuses on developing a novel, effective, and fully automatic lesion segmentation method for breast ultrasound images. By incorporating empirical domain knowledge of breast structure, a region of interest is generated. Then, a novel enhancement algorithm (using a novel phase feature) and a newly developed neutrosophic clustering method are developed to detect the precise lesion boundary. Neutrosophy is a recently introduced branch of philosophy that deals with paradoxes, contradictions, antitheses, and antinomies. When neutrosophy is used to segment images with vague boundaries, its unique ability to deal with uncertainty is brought to bear. In this work, we apply neutrosophy to breast ultrasound image segmentation and propose a new clustering method named neutrosophic l-means. We compare the proposed method with traditional fuzzy c-means clustering and three other well-developed segmentation methods for breast ultrasound images, using the same database. Both accuracy and time complexity are analyzed. The proposed method achieves the best accuracy (TP rate is 94.36%, FP rate is 8.08%, and similarity rate is 87.39%) with a fairly rapid processing speed (about 20 seconds). Sensitivity analysis shows the robustness of the proposed method as well. Cases with multiple-lesions and severe shadowing effect (shadow areas having similar intensity values of the lesion and tightly connected with the lesion) are not included in this study
    • …
    corecore