273 research outputs found

    Very fast watermarking by reversible contrast mapping

    Full text link
    Reversible contrast mapping (RCM) is a simple integer transform that applies to pairs of pixels. For some pairs of pixels, RCM is invertible, even if the least significant bits (LSBs) of the transformed pixels are lost. The data space occupied by the LSBs is suitable for data hiding. The embedded information bit-rates of the proposed spatial domain reversible watermarking scheme are close to the highest bit-rates reported so far. The scheme does not need additional data compression, and, in terms of mathematical complexity, it appears to be the lowest complexity one proposed up to now. A very fast lookup table implementation is proposed. Robustness against cropping can be ensured as well

    ROI-based reversible watermarking scheme for ensuring the integrity and authenticity of DICOM MR images

    Get PDF
    Reversible and imperceptible watermarking is recognized as a robust approach to confirm the integrity and authenticity of medical images and to verify that alterations can be detected and tracked back. In this paper, a novel blind reversible watermarking approach is presented to detect intentional and unintentional changes within brain Magnetic Resonance (MR) images. The scheme segments images into two parts; the Region of Interest (ROI) and the Region of Non Interest (RONI). Watermark data is encoded into the ROI using reversible watermarking based on the Difference Expansion (DE) technique. Experimental results show that the proposed method, whilst fully reversible, can also realize a watermarked image with low degradation for reasonable and controllable embedding capacity. This is fulfilled by concealing the data into ‘smooth’ regions inside the ROI and through the elimination of the large location map required for extracting the watermark and retrieving the original image. Our scheme delivers highly imperceptible watermarked images, at 92.18-99.94dB Peak Signal to Noise Ratio (PSNR) evaluated through implementing a clinical trial based on relative Visual Grading Analysis (relative VGA). This trial defines the level of modification that can be applied to medical images without perceptual distortion. This compares favorably to outcomes reported under current state-of-art techniques. Integrity and authenticity of medical images are also ensured through detecting subsequent changes enacted on the watermarked images. This enhanced security measure, therefore, enables the detection of image manipulations, by an imperceptible approach, that may establish increased trust in the digital medical workflow

    A Brief Review of RIDH

    Get PDF
    The Reversible image data hiding (RIDH) is one of the novel approaches in the security field. In the highly sensitive domains like Medical, Military, Research labs, it is important to recover the cover image successfully, Hence, without applying the normal steganography, we can use RIDH to get the better result. Reversible data hiding has a advantage over image data hiding that it can give you double security surely

    A Reversible Image Watermarking Scheme with High Contrast Visible Watermarks

    Get PDF
    [[abstract]]A reversible image watermarking scheme recovers the original host image when extracting the embedded watermarks. General reversible image watermarking scheme embeds invisible watermarks. This paper presents a reversible image watermarking scheme with embedding highly contrast visible watermarks. The host image first segments to non-overlapped blocks. Each block then uses two watermarking schemes including difference-expansion based invisible watermarking and high-contrast visible watermarking to embed one watermark bit into the host image. The difference-expansion based invisible watermarking scheme is adopted for extracting the watermark bit. Some extra information is therefore needed to be recorded. The high contrast visible watermarking scheme embeds significant visible watermarks. Experimental results show that the proposed scheme embeds high contrast visible watermarks and the watermarks can be extracted perfectly.[[notice]]補正完
    • …
    corecore