166 research outputs found

    FRIDA: FRI-Based DOA Estimation for Arbitrary Array Layouts

    Get PDF
    In this paper we present FRIDA---an algorithm for estimating directions of arrival of multiple wideband sound sources. FRIDA combines multi-band information coherently and achieves state-of-the-art resolution at extremely low signal-to-noise ratios. It works for arbitrary array layouts, but unlike the various steered response power and subspace methods, it does not require a grid search. FRIDA leverages recent advances in sampling signals with a finite rate of innovation. It is based on the insight that for any array layout, the entries of the spatial covariance matrix can be linearly transformed into a uniformly sampled sum of sinusoids.Comment: Submitted to ICASSP201

    Performance Comparison of Several Algorithms for Localization of Wideband Sources, Journal of Telecommunications and Information Technology, 2023, nr 3

    Get PDF
    In recent years, researchers have tried to estimate the direction-of-arrival (DOA) of wideband sources and several novel techniques have been proposed. In this paper, we compare six algorithms for calculating the DOA of broadband signals, namely coherent subspace signal method (CSSM), two-sided correlation transformation (TCT), incoherent multiple signal classification (IMUSIC), test of orthogonality of frequency subspaces (TOFS), test of orthogonality of projected subspaces (TOPS), and squared TOPS (S-TOPS). The comparison is made through computer simulations for different parameters, such as signal-to-noise ratio (SNR), in order to establish the efficiency and performance of the discussed methods in noisy environments. CSSM and TCT require initial values, but the remaining approaches do not need any preprocessing

    Wideband Direction of Arrival estimation and sparse modeling for underwater surveillance

    Get PDF
    In underwater surveillance sources, such as ships or submarines, are localized using the acoustic noise emitted by the source engines, propellers and other machinery. The acoustic signals propagate in the sea and are recorded with an array of acoustic sensors. Processing the recorded signals to obtain the locations of the sources is known as Direction of Arrival (DOA) estimation in the field of signal processing. A simple mathematical model relating the sensor array geometry to the DOA of the source exists when the frequency of the source signal is known. The model is directly applicable to a narrowband DOA estimation problem where the energy of the source signals is concentrated around a single carrier frequency. For underwater surveillance, however, the source signals are wideband which complicates the problem. This thesis reviews existing methods for wideband DOA estimation: Simple extensions of well known narrowband methods MVDR and MUSIC, the so called coherent methods and the most recent methods belonging into the sparse framework. An original idea for extending MVDR using a likelihood based combining of subbands, MVDR-LBC is developed. The thesis models the sensor signals as a sparse autoregressive process by linear prediction and the original algorithm GRLS. The sparse model is shown to be effective compared to the conventional non-sparse one. The model can be used to compress the data recorded in underwater surveillance. The wideband DOA estimation methods are tested with a number of simulations and with real data recorded in the sea. MVDR is shown to be robust and effective, the accuracy and resolution of which can be improved using MVDR-LBC. MUSIC provides good resolution, is computationally efficient and can be implemented quite simply. The coherent methods are the most complicated and need good pre-estimations for the source directions but can resolve close sources best

    Direction-Of-Arrival Estimation Using Multiple Sensors

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore