5,313 research outputs found

    An Expressive Language and Efficient Execution System for Software Agents

    Full text link
    Software agents can be used to automate many of the tedious, time-consuming information processing tasks that humans currently have to complete manually. However, to do so, agent plans must be capable of representing the myriad of actions and control flows required to perform those tasks. In addition, since these tasks can require integrating multiple sources of remote information ? typically, a slow, I/O-bound process ? it is desirable to make execution as efficient as possible. To address both of these needs, we present a flexible software agent plan language and a highly parallel execution system that enable the efficient execution of expressive agent plans. The plan language allows complex tasks to be more easily expressed by providing a variety of operators for flexibly processing the data as well as supporting subplans (for modularity) and recursion (for indeterminate looping). The executor is based on a streaming dataflow model of execution to maximize the amount of operator and data parallelism possible at runtime. We have implemented both the language and executor in a system called THESEUS. Our results from testing THESEUS show that streaming dataflow execution can yield significant speedups over both traditional serial (von Neumann) as well as non-streaming dataflow-style execution that existing software and robot agent execution systems currently support. In addition, we show how plans written in the language we present can represent certain types of subtasks that cannot be accomplished using the languages supported by network query engines. Finally, we demonstrate that the increased expressivity of our plan language does not hamper performance; specifically, we show how data can be integrated from multiple remote sources just as efficiently using our architecture as is possible with a state-of-the-art streaming-dataflow network query engine

    Visual exploration and retrieval of XML document collections with the generic system X2

    Get PDF
    This article reports on the XML retrieval system X2 which has been developed at the University of Munich over the last five years. In a typical session with X2, the user first browses a structural summary of the XML database in order to select interesting elements and keywords occurring in documents. Using this intermediate result, queries combining structure and textual references are composed semiautomatically. After query evaluation, the full set of answers is presented in a visual and structured way. X2 largely exploits the structure found in documents, queries and answers to enable new interactive visualization and exploration techniques that support mixed IR and database-oriented querying, thus bridging the gap between these three views on the data to be retrieved. Another salient characteristic of X2 which distinguishes it from other visual query systems for XML is that it supports various degrees of detailedness in the presentation of answers, as well as techniques for dynamically reordering and grouping retrieved elements once the complete answer set has been computed

    Modelling data intensive web sites with OntoWeaver

    Get PDF
    This paper illustrates the OntoWeaver modelling approach, which relies on a set of comprehensive site ontologies to model all aspects of data intensive web sites and thus offers high level support for the design and development of data-intensive web sites. In particular, the OntoWeaver site ontologies comprise two components: a site view ontology and a presentation ontology. The site view ontology provides meta-models to allow for the composition of sophisticated site views, which allow end users to navigate and manipulate the underlying domain databases. The presentation ontology abstracts the look and feel for site views and makes it possible for the visual appearance and layout to be specified at a high level of abstractio

    Knowledge Rich Natural Language Queries over Structured Biological Databases

    Full text link
    Increasingly, keyword, natural language and NoSQL queries are being used for information retrieval from traditional as well as non-traditional databases such as web, document, image, GIS, legal, and health databases. While their popularity are undeniable for obvious reasons, their engineering is far from simple. In most part, semantics and intent preserving mapping of a well understood natural language query expressed over a structured database schema to a structured query language is still a difficult task, and research to tame the complexity is intense. In this paper, we propose a multi-level knowledge-based middleware to facilitate such mappings that separate the conceptual level from the physical level. We augment these multi-level abstractions with a concept reasoner and a query strategy engine to dynamically link arbitrary natural language querying to well defined structured queries. We demonstrate the feasibility of our approach by presenting a Datalog based prototype system, called BioSmart, that can compute responses to arbitrary natural language queries over arbitrary databases once a syntactic classification of the natural language query is made

    Object-oriented querying of existing relational databases

    Get PDF
    In this paper, we present algorithms which allow an object-oriented querying of existing relational databases. Our goal is to provide an improved query interface for relational systems with better query facilities than SQL. This seems to be very important since, in real world applications, relational systems are most commonly used and their dominance will remain in the near future. To overcome the drawbacks of relational systems, especially the poor query facilities of SQL, we propose a schema transformation and a query translation algorithm. The schema transformation algorithm uses additional semantic information to enhance the relational schema and transform it into a corresponding object-oriented schema. If the additional semantic information can be deducted from an underlying entity-relationship design schema, the schema transformation may be done fully automatically. To query the created object-oriented schema, we use the Structured Object Query Language (SOQL) which provides declarative query facilities on objects. SOQL queries using the created object-oriented schema are much shorter, easier to write and understand and more intuitive than corresponding S Q L queries leading to an enhanced usability and an improved querying of the database. The query translation algorithm automatically translates SOQL queries into equivalent SQL queries for the original relational schema

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”
    corecore