67 research outputs found

    Transcript-based redefinition of grouped oligonucleotide probe sets using AceView: High-resolution annotation for microarrays

    Get PDF
    BACKGROUND: Extracting biological information from high-density Affymetrix arrays is a multi-step process that begins with the accurate annotation of microarray probes. Shortfalls in the original Affymetrix probe annotation have been described; however, few studies have provided rigorous solutions for routine data analysis. RESULTS: Using AceView, a comprehensive human transcript database, we have reannotated the probes by matching them to RNA transcripts instead of genes. Based on this transcript-level annotation, a new probe set definition was created in which every probe in a probe set maps to a common set of AceView gene transcripts. In addition, using artificial data sets we identified that a minimal probe set size of 4 is necessary for reliable statistical summarization. We further demonstrate that applying the new probe set definition can detect specific transcript variants contributing to differential expression and it also improves cross-platform concordance. CONCLUSION: We conclude that our transcript-level reannotation and redefinition of probe sets complement the original Affymetrix design. Redefinitions introduce probe sets whose sizes may not support reliable statistical summarization; therefore, we advocate using our transcript-level mapping redefinition in a secondary analysis step rather than as a replacement. Knowing which specific transcripts are differentially expressed is important to properly design probe/primer pairs for validation purposes. For convenience, we have created custom chip-description-files (CDFs) and annotation files for our new probe set definitions that are compatible with Bioconductor, Affymetrix Expression Console or third party software

    "Hook"-calibration of GeneChip-microarrays: Chip characteristics and expression measures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray experiments rely on several critical steps that may introduce biases and uncertainty in downstream analyses. These steps include mRNA sample extraction, amplification and labelling, hybridization, and scanning causing chip-specific systematic variations on the raw intensity level. Also the chosen array-type and the up-to-dateness of the genomic information probed on the chip affect the quality of the expression measures. In the accompanying publication we presented theory and algorithm of the so-called hook method which aims at correcting expression data for systematic biases using a series of new chip characteristics.</p> <p>Results</p> <p>In this publication we summarize the essential chip characteristics provided by this method, analyze special benchmark experiments to estimate transcript related expression measures and illustrate the potency of the method to detect and to quantify the quality of a particular hybridization. It is shown that our single-chip approach provides expression measures responding linearly on changes of the transcript concentration over three orders of magnitude. In addition, the method calculates a detection call judging the relation between the signal and the detection limit of the particular measurement. The performance of the method in the context of different chip generations and probe set assignments is illustrated. The hook method characterizes the RNA-quality in terms of the 3'/5'-amplification bias and the sample-specific calling rate. We show that the proper judgement of these effects requires the disentanglement of non-specific and specific hybridization which, otherwise, can lead to misinterpretations of expression changes. The consequences of modifying probe/target interactions by either changing the labelling protocol or by substituting RNA by DNA targets are demonstrated.</p> <p>Conclusion</p> <p>The single-chip based hook-method provides accurate expression estimates and chip-summary characteristics using the natural metrics given by the hybridization reaction with the potency to develop new standards for microarray quality control and calibration.</p

    Comparison of Affymetrix GeneChip Expression Measures

    Get PDF
    Affymetrix GeneChip expression array technology has become a standard tool in medical science and basic biology research. In this system, preprocessing occurs before one obtains expression level measurements. Because the number of competing preprocessing methods was large and growing, in the summer of 2003 we developed a benchmark to help users of the technology identify the best method for their application. In conjunction with the release of a Bioconductor R package (affycomp), a webtool was made available for developers of preprocessing methods to submit them to a benchmark for comparison. There have now been over 30 methods compared via the webtool. Results: Background correction, one of the main steps in preprocessing, has the largest effect on performance. In particular, background correction appears to improve accuracy but, in general, worsen precision. The benchmark results put this balance in perspective. Furthermore, we have improved some of the original benchmark metrics to provide more detailed information regarding accuracy and precision. A handful of methods stand out as maintaining a useful balance. The affycomp package, now version 1.5.2, continues to be available as part of the Bioconductor project (http://www.bioconductor.org). The webtool continues to be available at http://affycomp.biostat.jhsph.edu

    A gene selection method for GeneChip array data with small sample sizes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In microarray experiments with small sample sizes, it is a challenge to estimate p-values accurately and decide cutoff p-values for gene selection appropriately. Although permutation-based methods have proved to have greater sensitivity and specificity than the regular t-test, their p-values are highly discrete due to the limited number of permutations available in very small sample sizes. Furthermore, estimated permutation-based p-values for true nulls are highly correlated and not uniformly distributed between zero and one, making it difficult to use current false discovery rate (FDR)-controlling methods.</p> <p>Results</p> <p>We propose a model-based information sharing method (MBIS) that, after an appropriate data transformation, utilizes information shared among genes. We use a normal distribution to model the mean differences of true nulls across two experimental conditions. The parameters of the model are then estimated using all data in hand. Based on this model, p-values, which are uniformly distributed from true nulls, are calculated. Then, since FDR-controlling methods are generally not well suited to microarray data with very small sample sizes, we select genes for a given cutoff p-value and then estimate the false discovery rate.</p> <p>Conclusion</p> <p>Simulation studies and analysis using real microarray data show that the proposed method, MBIS, is more powerful and reliable than current methods. It has wide application to a variety of situations.</p

    Probe Level Analysis of Affymetrix Microarray Data

    Get PDF
    The analysis of Affymetrix GeneChip® data is a complex, multistep process. Most often, methodscondense the multiple probe level intensities into single probeset level measures (such as RobustMulti-chip Average (RMA), dChip and Microarray Suite version 5.0 (MAS5)), which are thenfollowed by application of statistical tests to determine which genes are differentially expressed. An alternative approach is a probe-level analysis, which tests for differential expression directly using the probe-level data. Probe-level models offer the potential advantage of more accurately capturing sources of variation in microarray experiments. However, this has not been thoroughly investigated, since current research efforts have largely focused on the development of improved expression summary methods. This research project will review current approaches to analysis of probe-level data and discuss extensions of two examples, the S-Score and the Random Variance Model (RVM). The S-Score is a probe-level algorithm based on an error model in which the detected signal is proportional to the probe pair signal for highly expressed genes, but approaches a background level (rather than 0) for genes with low levels of expression. Initial results with the S-Score have been promising, but the method has been limited to two-chip comparisons. This project presents extensions to the S-Score that permit comparisons of multiple chips and borrowing of information across probes to increase statistical power. The RVM is a probeset-level algorithm that models the variance of the probeset intensities as a random sample from a common distribution to borrow information across genes. This project presents extensions to the RVM for probe-level data, using multivariate statistical theory to model the covariance among probes in a probeset. Both of these methods show the advantages of probe-level, rather than probeset-level, analysis in detecting differential gene expression for Afymetrix GeneChip data. Future research will focus on refining the probe-level models of both the S-Score and RVM algorithms to increase the sensitivity and specificity of microarray experiments

    An introduction to low-level analysis methods of DNA microarray data

    Get PDF
    This article gives an overview over the methods used in the low--level analysis of gene expression data generated using DNA microarrays. This type of experiment allows to determine relative levels of nucleic acid abundance in a set of tissues or cell populations for thousands of transcripts or loci simultaneously. Careful statistical design and analysis are essential to improve the efficiency and reliability of microarray experiments throughout the data acquisition and analysis process. This includes the design of probes, the experimental design, the image analysis of microarray scanned images, the normalization of fluorescence intensities, the assessment of the quality of microarray data and incorporation of quality information in subsequent analyses, the combination of information across arrays and across sets of experiments, the discovery and recognition of patterns in expression at the single gene and multiple gene levels, and the assessment of significance of these findings, considering the fact that there is a lot of noise and thus random features in the data. For all of these components, access to a flexible and efficient statistical computing environment is an essential aspect

    The Shivplot: a graphical display for trend elucidation and exploratory analysis of microarray data

    Get PDF
    BACKGROUND: High-throughput systems are powerful tools for the life science research community. The complexity and volume of data from these systems, however, demand special treatment. Graphical tools are needed to evaluate many aspects of the data throughout the analysis process because plots can provide quality assessments for thousands of values simultaneously. The utility of a plot, in turn, is contingent on both its interpretability and its efficiency. RESULTS: The shivplot, a graphical technique motivated by microarrays but applicable to any replicated high-throughput data set, is described. The plot capitalizes on the strengths of three well-established plotting graphics – a boxplot, a distribution density plot, and a variability vs intensity plot – by effectively combining them into a single representation. CONCLUSION: The utility of the new display is illustrated with microarray data sets. The proposed graph, retaining all the information of its precursors, conserves space and minimizes redundancy, but also highlights features of the data that would be difficult to appreciate from the individual display components. We recommend the use of the shivplot both for exploratory data analysis and for the communication of experimental data in publications

    Empirical Bayes models for multiple probe type microarrays at the probe level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When analyzing microarray data a primary objective is often to find differentially expressed genes. With empirical Bayes and penalized t-tests the sample variances are adjusted towards a global estimate, producing more stable results compared to ordinary t-tests. However, for Affymetrix type data a clear dependency between variability and intensity-level generally exists, even for logged intensities, most clearly for data at the probe level but also for probe-set summarizes such as the MAS5 expression index. As a consequence, adjustment towards a global estimate results in an intensity-level dependent false positive rate.</p> <p>Results</p> <p>We propose two new methods for finding differentially expressed genes, Probe level Locally moderated Weighted median-t (PLW) and Locally Moderated Weighted-t (LMW). Both methods use an empirical Bayes model taking the dependency between variability and intensity-level into account. A global covariance matrix is also used allowing for differing variances between arrays as well as array-to-array correlations. PLW is specially designed for Affymetrix type arrays (or other multiple-probe arrays). Instead of making inference on probe-set summaries, comparisons are made separately for each perfect-match probe and are then summarized into one score for the probe-set.</p> <p>Conclusion</p> <p>The proposed methods are compared to 14 existing methods using five spike-in data sets. For RMA and GCRMA processed data, PLW has the most accurate ranking of regulated genes in four out of the five data sets, and LMW consistently performs better than all examined moderated t-tests when used on RMA, GCRMA, and MAS5 expression indexes.</p

    Should We Abandon the t-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies

    Get PDF
    High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test, which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In this context and given the current tendency to apply the t-test, identifying the most efficient approach in practice remains crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling strategies in gene expression data: Welch's t-test, ANOVA [1], Wilcoxon's test, SAM [2], RVM [3], limma [4], VarMixt [5] and SMVar [6]. Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate, execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement compared to the t-test, in particular to deal with small sample sizes. In addition limma presents several practical advantages, so we advocate its application to analyze gene expression data
    • …
    corecore