3,182 research outputs found

    Solving Set Constraint Satisfaction Problems using ROBDDs

    Full text link
    In this paper we present a new approach to modeling finite set domain constraint problems using Reduced Ordered Binary Decision Diagrams (ROBDDs). We show that it is possible to construct an efficient set domain propagator which compactly represents many set domains and set constraints using ROBDDs. We demonstrate that the ROBDD-based approach provides unprecedented flexibility in modeling constraint satisfaction problems, leading to performance improvements. We also show that the ROBDD-based modeling approach can be extended to the modeling of integer and multiset constraint problems in a straightforward manner. Since domain propagation is not always practical, we also show how to incorporate less strict consistency notions into the ROBDD framework, such as set bounds, cardinality bounds and lexicographic bounds consistency. Finally, we present experimental results that demonstrate the ROBDD-based solver performs better than various more conventional constraint solvers on several standard set constraint problems

    On OBDD-Based Algorithms and Proof Systems That Dynamically Change Order of Variables

    Get PDF
    In 2004 Atserias, Kolaitis and Vardi proposed OBDD-based propositional proof systems that prove unsatisfiability of a CNF formula by deduction of identically false OBDD from OBDDs representing clauses of the initial formula. All OBDDs in such proofs have the same order of variables. We initiate the study of OBDD based proof systems that additionally contain a rule that allows to change the order in OBDDs. At first we consider a proof system OBDD(and, reordering) that uses the conjunction (join) rule and the rule that allows to change the order. We exponentially separate this proof system from OBDD(and)-proof system that uses only the conjunction rule. We prove two exponential lower bounds on the size of OBDD(and, reordering)-refutations of Tseitin formulas and the pigeonhole principle. The first lower bound was previously unknown even for OBDD(and)-proofs and the second one extends the result of Tveretina et al. from OBDD(and) to OBDD(and, reordering). In 2004 Pan and Vardi proposed an approach to the propositional satisfiability problem based on OBDDs and symbolic quantifier elimination (we denote algorithms based on this approach as OBDD(and, exists)-algorithms. We notice that there exists an OBDD(and, exists)-algorithm that solves satisfiable and unsatisfiable Tseitin formulas in polynomial time. In contrast, we show that there exist formulas representing systems of linear equations over F_2 that are hard for OBDD(and, exists, reordering)-algorithms. Our hard instances are satisfiable formulas representing systems of linear equations over F_2 that correspond to some checksum matrices of error correcting codes

    Towards Verifying Nonlinear Integer Arithmetic

    Full text link
    We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give n^{O(1)} size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and quasipolynomial- n^{O(\log n)} size proofs for these identities on Wallace tree multipliers.Comment: Expanded and simplified with improved result

    Reordering Rule Makes OBDD Proof Systems Stronger

    Get PDF
    Atserias, Kolaitis, and Vardi showed that the proof system of Ordered Binary Decision Diagrams with conjunction and weakening, OBDD(^, weakening), simulates CP^* (Cutting Planes with unary coefficients). We show that OBDD(^, weakening) can give exponentially shorter proofs than dag-like cutting planes. This is proved by showing that the Clique-Coloring tautologies have polynomial size proofs in the OBDD(^, weakening) system. The reordering rule allows changing the variable order for OBDDs. We show that OBDD(^, weakening, reordering) is strictly stronger than OBDD(^, weakening). This is proved using the Clique-Coloring tautologies, and by transforming tautologies using coded permutations and orification. We also give CNF formulas which have polynomial size OBDD(^) proofs but require superpolynomial (actually, quasipolynomial size) resolution proofs, and thus we partially resolve an open question proposed by Groote and Zantema. Applying dag-like and tree-like lifting techniques to the mentioned results, we completely analyze which of the systems among CP^*, OBDD(^), OBDD(^, reordering), OBDD(^, weakening) and OBDD(^, weakening, reordering) polynomially simulate each other. For dag-like proof systems, some of our separations are quasipolynomial and some are exponential; for tree-like systems, all of our separations are exponential

    Pseudo-Boolean Constraint Encodings for Conjunctive Normal Form and their Applications

    Get PDF
    In contrast to a single clause a pseudo-Boolean (PB) constraint is much more expressive and hence it is easier to define problems with the help of PB constraints. But while PB constraints provide us with a high-level problem description, it has been shown that solving PB constraints can be done faster with the help of a SAT solver. To apply such a solver to a PB constraint we have to encode it with clauses into conjunctive normal form (CNF). While we can find a basic encoding into CNF which is equivalent to a given PB constraint, the solving time of a SAT solver significantly depends on different properties of an encoding, e.g. the number of clauses or if generalized arc consistency (GAC) is maintained during the search for a solution. There are various PB encodings that try to optimize or balance these properties. This thesis is about such encodings. For a better understanding of the research field an overview about the state-of-the art encodings is given. The focus of the overview is a simple but complete description of each encoding, such that any reader could use, implement and extent them in his own work. In addition two novel encodings are presented: The Sequential Weight Counter (SWC) encoding and the Binary Merger Encoding. While the SWC encoding provides a very simple structure – it is listed in four lines – empirical evaluation showed its practical usefulness in various applications. The Binary Merger encoding reduces the number of clauses a PB encoding needs while having the important GAC property. To the best of our knowledge currently no other encoding has a lower upper bound for the number of clauses produced by a PB encoding with this property. This is an important improvement of the state-of-the art, since both GAC and a low number of clauses are vital for an improved solving time of the SAT solver. The thesis also contributes to the development of new applications for PB constraint encodings. The programming library PBLib provides researchers with an open source implementation of almost all PB encodings – including the encodings for the special cases at-most-one and cardinality constraints. The PBLib is also the foundation of the presented weighted MaxSAT solver optimax, the PBO solver pbsolver and the WBO, PBO and weighted MaxSAT solver npSolver

    Separating Incremental and Non-Incremental Bottom-Up Compilation

    Get PDF
    The aim of a compiler is, given a function represented in some language, to generate an equivalent representation in a target language L. In bottom-up (BU) compilation of functions given as CNF formulas, constructing the new representation requires compiling several subformulas in L. The compiler starts by compiling the clauses in L and iteratively constructs representations for new subformulas using an "Apply" operator that performs conjunction in L, until all clauses are combined into one representation. In principle, BU compilation can generate representations for any subformulas and conjoin them in any way. But an attractive strategy from a practical point of view is to augment one main representation - which we call the core - by conjoining to it the clauses one at a time. We refer to this strategy as incremental BU compilation. We prove that, for known relevant languages L for BU compilation, there is a class of CNF formulas that admit BU compilations to L that generate only polynomial-size intermediate representations, while their incremental BU compilations all generate an exponential-size core
    • …
    corecore